Những câu hỏi liên quan
MT
Xem chi tiết
QA
Xem chi tiết
NH
13 tháng 7 2023 lúc 12:13

     2\(\sqrt{\dfrac{16}{3}}\)  - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\)  - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{11}{2\sqrt{3}}\)

\(\dfrac{11\sqrt{3}}{6}\)

f, 2\(\sqrt{\dfrac{1}{2}}\)\(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5\sqrt{2}}{4}\)

 

 

Bình luận (0)
NH
13 tháng 7 2023 lúc 12:23

(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{3-1}\)

\(\dfrac{-4}{2}\)

= -2

Bình luận (0)
NH
13 tháng 7 2023 lúc 12:36

   \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)

\(\dfrac{2.\left(\sqrt{6}+2\right)+2\left(\sqrt{6}-4\right)}{\left(\sqrt{6}-2\right)}\) + \(\dfrac{5}{\sqrt{6}}\)

\(\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{6-4}\) + \(\dfrac{5\sqrt{6}}{6}\)

\(\dfrac{4\sqrt{6}}{2}\) + \(\dfrac{5\sqrt{6}}{6}\)

\(\dfrac{12\sqrt{6}+5\sqrt{6}}{6}\)

\(\dfrac{17\sqrt{6}}{6}\)

Bình luận (0)
LD
Xem chi tiết
TC
Xem chi tiết
CD
25 tháng 6 2018 lúc 14:36

(oh) hóa trị 1 mà zn hóa trị 2=> cthh la zn(oh)2

với lại ko có oh2 dau chi co OH hoac la H2O

Bình luận (0)
VH
25 tháng 6 2018 lúc 14:10

phải viết là Zn(OH)2 vì nhóm (OH) hóa trị I

Bình luận (0)
TC
25 tháng 6 2018 lúc 14:26

Nhưng mà Zn có hóa trị là II, nhóm (OH2) có hóa trị là I, nếu như vậy, theo CTHH, ta có:

\(x.II=y.I\Rightarrow\frac{X}{Y}=\frac{I}{II}\Rightarrow X=1;Y=2.\)

Vậy CTHH của hợp chất là: Zn(OH2)2 chứ nguyên nhóm (OH2 ) có hóa trị là I mà chứ đâu phải nhóm (OH). Xem lại giùm mình đi bạn!

Bình luận (0)
TT
Xem chi tiết
NT
1 tháng 2 2024 lúc 14:44

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>\(\widehat{AMB}=90^0\)

b: Xét ΔOMC vuông tại M có MH là đường cao

nên \(HC\cdot HO=HM^2\left(1\right)\)

Xét ΔMAB vuông tại M có MH là đường cao

nên \(HA\cdot HB=HM^2\left(2\right)\)

Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)

c: Xét tứ giác AMBQ có

O là trung điểm của AB và MQ

Do đó: AMBQ là hình bình hành

Hình bình hành AMBQ có AB=MQ

nên AMBQ là hình bình hành

Bình luận (0)
DH
Xem chi tiết
H24
26 tháng 12 2022 lúc 20:54

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)

Ta lấy vễ trên chia vế dưới

\(=3.2=6\)

\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)

Ta lấy vế trên chia vế dưới

\(=2^3.3=24\)

Bình luận (0)
H24
26 tháng 12 2022 lúc 20:54

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)

Bình luận (0)
NN
26 tháng 12 2022 lúc 20:54

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}=3.2=6\)

\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)

Bình luận (0)
LC
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
H24
13 tháng 12 2020 lúc 18:24

11 c)

\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)

Bình luận (0)
H24
13 tháng 12 2020 lúc 18:38

12 a)  Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)

áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm ) 

b)  áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)

Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)

\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)

Bình luận (0)
H24
13 tháng 12 2020 lúc 18:50

13 b) \(\left(a+b\right)\left(ab+1\right)\ge2\sqrt{ab}.2\sqrt{ab}=4ab\)

Dấu = xảy ra khi a=b=1

Bình luận (0)