Giải pt:
\(x^2+\dfrac{4x^2}{(x+2)^2}=12\)
Giúp mình nhaa
Giải PT: \(\sqrt{12-\dfrac{3}{x^2}}+\sqrt{4x^2-\dfrac{3}{x^2}}=4x^2\)
Tham khảo:
Giải phương trình: \(\sqrt{12-\dfrac{3}{x^2}}+\sqrt{4x^2-\dfrac{3}{x^2}}=4x^2\) - Hoc24
Giải PT
a) x4 = 4x + 1
b) x2 = \(\dfrac{4x^2}{(x+2\left(\right)^{ }2}\) = 12
Bài 2: Giải PT
\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\)
2.
\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\\ \Leftrightarrow\dfrac{x+5}{2006}+1+\dfrac{x+4}{2007}+1+\dfrac{x+3}{2008}+1< \dfrac{x+9}{2002}+1+\dfrac{x+10}{2001}+1+\dfrac{x+11}{2000}+1\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}< \dfrac{x+2011}{2002}+\dfrac{x+2011}{2001}+\dfrac{x+2011}{2000}\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}-\dfrac{x+2011}{2002}-\dfrac{x+2011}{2001}-\dfrac{x+2011}{2000}< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2002}-\dfrac{1}{2001}-\dfrac{1}{2000}\right)< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
Vì \(\left\{{}\begin{matrix}\dfrac{1}{2006}< \dfrac{1}{2002}\\\dfrac{1}{2007}< \dfrac{1}{2001}\\\dfrac{1}{2008}< \dfrac{1}{2000}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2006}-\dfrac{1}{2002}< 0\\\dfrac{1}{2007}-\dfrac{1}{2001}< 0\\\dfrac{1}{2008}-\dfrac{1}{2000}< 0\end{matrix}\right.\Rightarrow\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
\(\Rightarrow x>0\)
Vậy \(x>0\)
\(\dfrac{x^2+2x+2}{^{ }x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)
giải pt
\(\dfrac{x^2+2x+2}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)\(\Leftrightarrow\)\(\dfrac{x^2+2x+1+1}{x+1}+\dfrac{x^2+8x+16+4}{x+4}=\dfrac{x^2+4x+4+2}{x+2}+\dfrac{x^2+6x+9+3}{x+3}\)
\(\Leftrightarrow\) \(\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)
\(\Leftrightarrow\) \(x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow\) \(\dfrac{1}{x+1}\) + \(\dfrac{4}{x+4}\) - \(\dfrac{2}{x+2}\) - \(\dfrac{3}{x+3}\) = x + 2 + x + 3 - x - 1 - x - 4
\(\Leftrightarrow\) \(\dfrac{1}{x+1}\) + \(\dfrac{4}{x+4}\) - \(\dfrac{2}{x+2}\) - \(\dfrac{3}{x+3}\) = 0
\(\Leftrightarrow\) \(\dfrac{1}{x+1}\) + \(\dfrac{4}{x+4}\) = \(\dfrac{2}{x+2}\) + \(\dfrac{3}{x+3}\)
\(\Leftrightarrow\) \(\dfrac{x+4}{\left(x+1\right)\left(x+4\right)}\) + \(\dfrac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}\) = \(\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x+2\right)}\) + \(\dfrac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{x+4+4x+4}{x^2+5x+4}\) = \(\dfrac{2x+6+3x+6}{x^2+5x+6}\)
\(\Leftrightarrow\) \(\dfrac{5x+8}{x^2+5x+4}\) = \(\dfrac{5x+12}{x^2+5x+6}\)
Đặt 5x + 8 = y; x2 + 5x + 4 = t, ta có:
\(\dfrac{y}{t}\) = \(\dfrac{y+4}{t+2}\)
\(\Leftrightarrow\) \(\dfrac{y\left(t+2\right)}{t\left(t+2\right)}\) = \(\dfrac{t\left(y+4\right)}{t\left(t+2\right)}\)
\(\Leftrightarrow\) yt + 2y = yt + 4t
\(\Leftrightarrow\) 2y = 4t
\(\Leftrightarrow\) 2(5x + 8) = 4(x2 + 5x + 4)
\(\Leftrightarrow\) 10x + 16 = 4x2 + 20x + 16
\(\Leftrightarrow\) 16 - 16 = 4x2 + 20x - 10x
\(\Leftrightarrow\) 0 = 4x2 + 10x
\(\Leftrightarrow\) 2x(2x + 5) = 0
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
CHÚC BN HOK TỐT...
Giải pt
\(\dfrac{x^2+2x}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)
\(\Leftrightarrow\dfrac{x^2+2x+1-1}{x+1}+\dfrac{x^2+8x+16+4}{x+4}=\dfrac{x^2+4x+4+2}{x+2}+\dfrac{x^2+6x+9+3}{x+3}\)
\(\Leftrightarrow x+1-\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow2x+5-\dfrac{1}{x+1}+\dfrac{4}{x+4}=2x+5+\dfrac{2}{x+2}+\dfrac{3}{x+3}\)
=>-x-4+4x+4=2x+6+3x+6
=>3x=5x+12
=>-2x=12
hay x=-6(nhận)
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+12}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)giải pt
Giúp tui với
GIẢI PT:
a) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\)
b) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\)
e) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\)
MN GIẢI BÀI NÀY GIÚP E VỚI Ạ. E ĐANG CẦN GẤP Ạ.
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
g) \(\dfrac{12x+1}{12}\) ≥ \(\dfrac{9x+3}{3}\) - \(\dfrac{8x+1}{4}\)
h) \(\dfrac{x-1}{2}\) + \(\dfrac{2-x}{3}\) ≤ \(\dfrac{3x-3}{4}\)
i) (2x-3)2 > x(4x - 3)
Giúp mình giải chi tiết với
g: =>12x+1>=36x+12-24x-3
=>12x+1>=12x+9(loại)
h: =>6(x-1)+4(2-x)<=3(3x-3)
=>6x-6+8-4x<=9x-9
=>2x+2<=9x-9
=>-7x<=-11
=>x>=11/7
i: =>4x^2-12x+9>4x^2-3x
=>-12x+9>-3x
=>-9x>-9
=>x<1
GIẢI PT :
1) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\)
2) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\)
3) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\)
GIẢI PHƯƠNG TRÌNH VÀ GHI RÕ ĐIỀU KIỆN CỦA CÁC CÂU.
MN GIÚP E BÀI NÀY VỚI Ạ. E ĐANG CẦN GẤP Ạ.
1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)
hay x=10
mọi người ơi, giúp mình giải phương trình này vớiiii:
\(\dfrac{x+4}{x^2-3x+2}+\dfrac{x+1}{x^2-4x+3}=\dfrac{2x+5}{x^2-4x+3}\)
\(Đk:\) \(x\ne1,x\ne2,x\ne3\)
\(\Rightarrow\dfrac{x+4}{\left(x-2\right)\left(x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(x-1\right)}=\dfrac{2x+5}{\left(x-3\right)\left(x-1\right)}\)
\(\Rightarrow\dfrac{\left(x+4\right)\cdot\left(x-3\right)+\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x-3\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(x-3\right)\left(x-1\right)\left(x-2\right)}\)
\(\Rightarrow x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)
\(\Rightarrow0x-14=x-10\)
\(\Rightarrow x=-4\left(tmđk\right)\)