Những câu hỏi liên quan
AN
Xem chi tiết
NL
21 tháng 12 2022 lúc 21:44

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

Bình luận (2)
HL
Xem chi tiết
HL
17 tháng 12 2023 lúc 16:08

giúp tui với

Bình luận (0)
NT
17 tháng 12 2023 lúc 21:12

a: Gọi số tự nhiên lập được là \(\overline{abc}\)

a có 5 cách chọn

b có 5 cách chọn

c có 5 cách chọn

Do đó: Có \(5\cdot5\cdot5=125\left(số\right)\) có 3 chữ số lập được từ các chữ số của tập hợp A

b: Gọi số tự nhiên cần tìm có dạng là \(\overline{abc}\)

a có 5 cách chọn

b có 4 cách chọn

c có 3 cách chọn

Do đó: Có 5*4*3=60 số có 3 chữ số khác nhau lập được từ tập hợp A

Bình luận (1)
LY
Xem chi tiết
PB
Xem chi tiết
CT
20 tháng 4 2019 lúc 5:19

Đáp án B

Phương pháp: Xét từng trường hợp a = 3; b = 3; c = 3 rồi cộng các kết quả ta được số các số cần tìm.

Cách giải: Gọi số có ba chữ số là a b c ¯ .

- TH1: a = 3.

Có 4 cách chọn b và 3 cách chọn c nên có 4.3 = 12 số.

- TH2: b = 3

Có 4 cách chọn a và 3 cách chọn c nên có 4.3 = 12 số.

- TH3: c = 3.

Có 4 cách chọn a và 3 cách chọn b nên có 4.3 = 12 số.

Vậy có tất cả 12 + 12 + 12 = 36 số.

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 11 2019 lúc 15:50

Đáp án C.

Hướng dẫn giải: Gọi số cần tìm có dạng  

Chọn : có cách

Vậy có số.

Bình luận (0)
HK
Xem chi tiết
TP
6 tháng 1 2023 lúc 8:09

Gọi số tự nhiên gồm 4 chữ số là: abcd

Trường hợp 1: d=0 (1 cách)

a : 6 cách ( #0);         b: 5 cách;     c:4 cách => 120 cách

TH2: d#0 ( nhận 2 4 6 => 1 cách)

a: 5 cách (#0; #d); b : 4 cách; c: 3 cách => 60 cách

=> TH1 + TH2 = 200 cách

Bình luận (0)
TP
6 tháng 1 2023 lúc 8:12

ý lộn TH2: b: 5 cách(#a; #d); c: 4 cách => 100 cách

=> Tổng cộng 220 cách

Bình luận (0)
DT
Xem chi tiết
NT
9 tháng 7 2023 lúc 13:05

a: \(\overline{abc}\)

a có 3 cáhc

b có 4 cáhc

c có 4 cách

=>Có 3*4*4=48 cách

b: \(\overline{abcd}\)

a có 3 cách

b có 3 cách

c có 2 cách

d có 1 cách

=>Có 3*3*2=18 cách

c: \(\overline{abc}\)

c có 1 cách

a có 3 cách

b có 4 cách

=>Có 1*3*4=12 cách

d: \(\overline{abcd}\)

TH1: d=0

=>Có 3*4*4=48 cách

TH2: d<>0

d có 2 cách

a có 3 cách

b có 4 cách

c có 4 cách

=>Có 4*4*3*2=16*6=96 cách

=>Có 144 cách

Bình luận (1)
NH
Xem chi tiết
NL
24 tháng 7 2021 lúc 9:06

a. Gọi số đó là \(\overline{ab}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)

Theo quy tắc nhân ta có: \(5.5=25\) số

b. Gọi số đó là \(\overline{abc}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)

Có: \(5.5.4=100\) số

c. Gọi số đó là \(\overline{abcd}\)

Do số chẵn nên d chẵn

- TH1: \(d=0\) (1 cách chọn d)

a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn 

\(\Rightarrow1.5.4.3=60\) số

- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn

d.

Gọi số đó là \(\overline{abcde}\)

Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)

a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách

\(\Rightarrow3.4.4.3.2=288\) số

Bình luận (1)
TK
Xem chi tiết
NL
17 tháng 9 2021 lúc 20:51

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

\(\Rightarrow\) d có 5 cách chọn (từ 1;3;5;7;9)

a có 8 cách chọn (khác 0 và d)

b có 8 cách chọn (khác a và d)

c có 7 cách chọn (khác a;b;c)

\(\Rightarrow\) có \(5.8.8.7=2240\) số

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 11 2017 lúc 13:09

Đáp án D

Phương pháp: Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.

Cách giải: Gọi số đó là  a b c d e

- TH1: a = 1

+ b có 7 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 7.6.5.4 = 840 số

- TH2: b = 1

+ a ≠ b ,   a   ≠ 0 , nên có 6 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 6.6.5.4 = 720 số.

- TH3: c = 1.

+ a ≠ c ,   a ≠ 0 , nên có 6 cách chọn.

+ b có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có 6.6.5.4 = 720 số.

Vậy có tất cả 840 + 720 + 720 = 2280 số.

Bình luận (0)