cmr : ∀ a >0, b>0, c>0 ta có \(\dfrac{a}{2a+b}+\dfrac{b}{2b+a}\le\dfrac{2}{3}\)
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
a.
\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)
2.
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)
Quay lại câu a
\(b,\dfrac{ab}{a+3b+2c}=\left(\dfrac{1}{9}ab\right)\cdot\dfrac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\left(\dfrac{1}{9}ab\right)\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\cdot\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Cmtt: \(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\cdot\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+b}+\dfrac{b}{2}\right);\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\cdot\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)
\(\Rightarrow VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ab+ac}{b+c}+\dfrac{ab+bc}{a+c}+\dfrac{a+b+c}{2}\right)\\ \le\dfrac{1}{9}\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}\cdot\dfrac{3}{2}\left(a+b+c\right)=\dfrac{a+b+c}{6}\)
Dấu $"="$ khi $a=b=c$
Cho a, b, c > 0 . CMR :
\(\dfrac{a^3}{\left(2a+b\right)\left(2b+c\right)}+\dfrac{b^3}{\left(2b+c\right)\left(2c+a\right)}+\dfrac{c^3}{\left(2c+a\right)\left(2a+b\right)}\le\dfrac{a+b+c}{9}\)
Dấu >= hay <= vậy bạn? Bạn xem lại đề.
Cho a, b, c > 0 . CMR :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{9}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{c+a}+\dfrac{b}{2}\right)\)
\(\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ca+ab}{b+c}+\dfrac{bc+ab}{c+a}+\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{6}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c>0. CMR
\(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\le\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\)
\(\dfrac{1}{a+3b}+\dfrac{1}{a+b+2c}\ge\dfrac{4}{2a+4b+2c}=\dfrac{2}{a+2b+c}\)
Tương tự: \(\dfrac{1}{b+3c}+\dfrac{1}{b+c+2a}\ge\dfrac{2}{a+b+2c}\)
\(\dfrac{1}{c+3a}+\dfrac{1}{a+c+2b}\ge\dfrac{2}{2a+b+c}\)
Cộng vế với vế và rút gọn:
\(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a, b, c > 0, a + b + c = 1
CMR : \(\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\le\dfrac{3}{4}\)
Do \(a+b+c=1\) nên Bất đẳng thức trên tương đương:
\(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}\le\dfrac{3}{4}\)
\(\Leftrightarrow\left(1-\dfrac{1}{1+a}\right)+\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\le\dfrac{3}{4}\)
\(\Leftrightarrow3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\le\dfrac{3}{4}\)
Áp dụng BĐT cauchy-schwarz engel với a;b;c>0 ta có:
\(3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\le3-\dfrac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=3-\dfrac{9}{4}=\dfrac{3}{4}\)
Ta có:
\(\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}=\dfrac{a}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{\left(a+c\right)+\left(b+c\right)}=\dfrac{a}{4}.\dfrac{4}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{4}.\dfrac{4}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{4}.\dfrac{4}{\left(a+c\right)+\left(b+c\right)}=\dfrac{a}{4}.\dfrac{\left(1+1\right)^2}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{4}.\dfrac{\left(1+1\right)^2}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{4}.\dfrac{\left(1+1\right)^2}{\left(a+c\right)+\left(b+c\right)}\)Áp dụng BĐT Cauchy - Schwarz:
\(VT\le\dfrac{a}{4}.\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)=\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)=\dfrac{1}{4}.3=\dfrac{3}{4}\)\("="\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Cho a,b,c > 0:abc=1
Cmr: \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
Ta có:
\(a^2+b^2\ge2ab\)
\(b^2+1\ge2ab\)
\(\Rightarrow a^2+2ab^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\dfrac{1}{a^2+2b^2+3}< \dfrac{1}{2.\left(ab+b+1\right)}\)
Tương tự:
\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}.\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\right)\)
Mặt khác:
\(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}=\dfrac{1}{ab+b+1}+\dfrac{ab}{ab^2c+abc+ab}+\dfrac{b}{bca+ab+b}=1\)
\(\Rightarrow\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)
\(\Leftrightarrow a=b=c=1\)
\(\Rightarrow\) Đpcm.
Áp dụng BĐT AM - GM, ta có:
\(a^2+2b^2+3\)
\(=\left(a^2+b^2\right)+\left(b^2+1\right)+2\)
\(\ge2ab+2b+2\)
Tương tự, ta có: \(b^2+2c^2+3\ge2bc+2c+2\) và \(c^2+2a^2+3\ge2ac+2a+2\)
\(VT=\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\)
\(\le\dfrac{1}{2ab+2b+2}+\dfrac{1}{2bc+2c+2}+\dfrac{1}{2ac+2a+2}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ac+a+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{abc}{bc+c+abc}+\dfrac{abc}{ac+a^2bc+abc}\right)\) (Thay abc = 1)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{b+1+ab}+\dfrac{b}{1+ab+b}\right)\)
\(=\dfrac{1}{2}\times\dfrac{1+ab+b}{ab+b+1}\)
\(=\dfrac{1}{2}=VP\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi a = b = c = 1
Cho a,b,c>0. CMR: \(\dfrac{ab^2}{a^2+2b^2+c^2}+\dfrac{bc^2}{b^2+2c^2+a^2}+\dfrac{ca^2}{c^2+2a^2+b^2}\le\dfrac{a+b+c}{4}\)
Giả sử c là số ở giửa a và b. khi đó \(\left(b-c\right)\left(c-a\right)\ge0\)
Ta chứng minh :
\(VT\le c\left(\dfrac{b^2}{2b^2+a^2+c^2}+\dfrac{a^2}{2a^2+b^2+c^2}\right)+\dfrac{abc}{a^2+b^2+2c^2}\)(*)
\(\Leftrightarrow\dfrac{\left(c-a\right)\left(b-c\right)\left(b^2+c^2-bc+a^2\right)}{\left(a^2+c^2+2b^2\right)\left(b^2+a^2+2c^2\right)}\ge0\) (Đúng)
Áp dụng BĐT AM-GM:
\(VT\le\dfrac{c}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{b^2}{b^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{a^2}{a^2+c^2}\right)+\dfrac{abc}{2ac+2bc}\)
\(\le\dfrac{c}{4}\left(1+\dfrac{b^2}{2bc}+\dfrac{a^2}{2ac}\right)+\dfrac{\dfrac{\left(a+b\right)^2}{4}}{2\left(a+b\right)}=\dfrac{c}{4}+\dfrac{a+b}{8}+\dfrac{a+b}{8}\)
\(=\dfrac{a+b+c}{4}\)( \(ĐpcM\))
Dấu = xảy ra khi a=b=c
Cho a,b,c > 0 có a+b+c \(\le3\)
CMR : \(\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}+\dfrac{b}{\sqrt{2b^2+c^2}\sqrt{3}}+\dfrac{c}{\sqrt{2c^2+a^2}+\sqrt{3}}\le\dfrac{\sqrt{3}}{2}\)
Áp dụng BĐT phụ:
\(3\left(a^2+a^2+b^2\right)\ge\left(2a+b\right)^2\)
P=\(\sum\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}\)
\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P=\sum\dfrac{a}{\sqrt{3\left(a^2+a^2+b^2\right)}+3}\)
\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\sum\dfrac{a}{\sqrt{\left(2a+b\right)^2}+a+b+c}=\sum\dfrac{a}{3a+2b+c}\)
Xét M=\(\sum\dfrac{a}{3a+2b+c}\)
\(3-3M=\sum\dfrac{2b+c}{3a+2b+c}\)
\(\Rightarrow\)\(3-3M=\sum\dfrac{\left(2b+c\right)^2}{\left(3a+2b+c\right)\left(2b+c\right)}\ge\)\(\dfrac{\left(3a+3b+3c\right)^2}{\sum\left(3a+2b+c\right)\left(2b+c\right)}\)
Mà
\(\sum\left(3a+2b+c\right)\left(2b+c\right)=5a^2+5b^2+5c^2+13ab+13bc+13ac=5\left(a+b+c\right)^2+3\left(ab+bc+ac\right)\le5\left(a+b+c\right)^2+\left(a+b+c\right)^2\)
\(\Rightarrow\)\(3-3M\ge\dfrac{\left(3a+3b+3c\right)^2}{6\left(a+b+c\right)^2}\ge\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrow\)\(M\le\dfrac{1}{2}\)
\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\dfrac{1}{2}\Rightarrow P\le\dfrac{\sqrt{3}}{2}\)
Dấu \(=\) xảy ra khi và chỉ khi x=y=z=1
Cho a, b, c > 0. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)≥\(\dfrac{3}{a+2b}+\dfrac{3}{b+2c}+\dfrac{3}{c+2a}\)
Cho a,b,c >0, chứng minh rằng :\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{... - Hoc24