§1. Bất đẳng thức

LC

Cho a,b,c>0. CMR: \(\dfrac{ab^2}{a^2+2b^2+c^2}+\dfrac{bc^2}{b^2+2c^2+a^2}+\dfrac{ca^2}{c^2+2a^2+b^2}\le\dfrac{a+b+c}{4}\)

HN
10 tháng 12 2018 lúc 22:38

Giả sử c là số ở giửa a và b. khi đó \(\left(b-c\right)\left(c-a\right)\ge0\)

Ta chứng minh :

\(VT\le c\left(\dfrac{b^2}{2b^2+a^2+c^2}+\dfrac{a^2}{2a^2+b^2+c^2}\right)+\dfrac{abc}{a^2+b^2+2c^2}\)(*)

\(\Leftrightarrow\dfrac{\left(c-a\right)\left(b-c\right)\left(b^2+c^2-bc+a^2\right)}{\left(a^2+c^2+2b^2\right)\left(b^2+a^2+2c^2\right)}\ge0\) (Đúng)

Áp dụng BĐT AM-GM:

\(VT\le\dfrac{c}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{b^2}{b^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{a^2}{a^2+c^2}\right)+\dfrac{abc}{2ac+2bc}\)

\(\le\dfrac{c}{4}\left(1+\dfrac{b^2}{2bc}+\dfrac{a^2}{2ac}\right)+\dfrac{\dfrac{\left(a+b\right)^2}{4}}{2\left(a+b\right)}=\dfrac{c}{4}+\dfrac{a+b}{8}+\dfrac{a+b}{8}\)

\(=\dfrac{a+b+c}{4}\)( \(ĐpcM\))

Dấu = xảy ra khi a=b=c

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
LL
Xem chi tiết
LV
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LV
Xem chi tiết
PT
Xem chi tiết
MD
Xem chi tiết