\(\sqrt{16}.\left(-\dfrac{1}{2}\right)^3+3.\left(\dfrac{1}{2}\right)^2+2.\sqrt{\dfrac{1}{4}}\)
Tính:
a) \(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5\)
b) \(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2\)
c) \(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)\)
d) \(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)
e) \(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)
a,\(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5=\left(\sqrt{\dfrac{25}{16}}-\dfrac{3}{4}\right):5=\left(\dfrac{5}{4}-\dfrac{3}{4}\right):5\)
\(=\dfrac{1}{2}:5=\dfrac{1}{10}\)
b,\(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2=\left[\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\right]^2\)
\(=\left[3-4\right]^2=1\)
c,\(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)=11^2-\left(4\sqrt{3}\right)^2\)
\(=121-48=73\)
d,\(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)
\(=2-2\sqrt{2}+1-3+\dfrac{4\sqrt{2}}{5}+\sqrt{\dfrac{36}{25}.2}\)
\(=-2\sqrt{2}+\dfrac{4\sqrt{2}+6\sqrt{2}}{5}\)
\(=-2\sqrt{2}+\dfrac{10\sqrt{2}}{5}=-2\sqrt{2}+2\sqrt{2}=0\)
e,\(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)
\(=\left(1+\sqrt{2021}\right)\sqrt{2021-2\sqrt{2021}.1+1}\)
\(=\left(1+\sqrt{2021}\right)\sqrt{\left(\sqrt{2021}-1\right)^2}\)
\(=\left(1+\sqrt{2021}\right)\left(\sqrt{2021}-1\right)\)
\(=\sqrt{2021}-1+\sqrt{2021^2}-\sqrt{2021}=2020\)
bài 1: tính
a) 3/4+(-5/2)+(-3/5)
b) \(\sqrt{\left(7\right)^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}\)
c)\(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}\)
a)\(\dfrac{3}{4}-\dfrac{5}{2}-\dfrac{3}{5}=\dfrac{15}{20}-\dfrac{50}{20}-\dfrac{12}{20}=-\dfrac{47}{20}\)
b) \(\sqrt{7^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}=7+\sqrt{\dfrac{1}{16}}=7+\dfrac{1}{4}=\dfrac{29}{4}\)
c) \(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}=\dfrac{1}{2}.10-\sqrt{\dfrac{1}{16}+1}=5-\sqrt{\dfrac{17}{16}}\)
\(\sqrt{\dfrac{16}{49}}+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{4}{7}\right|-\dfrac{7}{8}\)
\(\left|\dfrac{1}{2}-\dfrac{3}{5}\right|\cdot\sqrt{9}+0.5\cdot\left(-2\dfrac{3}{5}\right)\)
\(\sqrt{\dfrac{16}{49}}+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{4}{7}\right|-\dfrac{7}{8}\)
\(=\dfrac{4}{7}+\dfrac{1}{8}-\dfrac{4}{7}-\dfrac{7}{8}\)
\(=\dfrac{1}{8}-\dfrac{7}{8}=-\dfrac{6}{8}=-\dfrac{3}{4}\)
\(\left|\dfrac{1}{2}-\dfrac{3}{5}\right|\cdot\sqrt{9}+0,5\left(-2\dfrac{3}{5}\right)\)
\(=\left|\dfrac{5-6}{10}\right|\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)
\(=\dfrac{1}{10}\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)
\(=\dfrac{3}{10}-\dfrac{13}{10}=-\dfrac{10}{10}=-1\)
a) \(4.\left(-\dfrac{1}{2}\right)^3\)\(-2.\left(-\dfrac{1}{2}\right)^2\)+\(3.\left(-\dfrac{1}{2}\right)\)+1
b) \(8.\sqrt{9}\)\(-\sqrt{64}\)
c) \(\sqrt{\dfrac{9}{16}}\)\(+\dfrac{25}{46}\)\(:\dfrac{5}{23}\)\(-\dfrac{7}{4}\)
đung cho 5 sao
a) \(4.\left(-\dfrac{1}{2}\right)^3-2.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)+1\)
\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}+3.\left(-\dfrac{1}{2}\right)+1\)
\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1\)
\(=-\dfrac{3}{2}\)
b) \(8.\sqrt{9}-\sqrt{64}\)
\(=8.3-8\)
\(=24-8\)
\(=16\)
c) \(\sqrt{\dfrac{9}{16}}+\dfrac{25}{46}:\dfrac{5}{23}-\dfrac{7}{4}\)
\(=\dfrac{3}{4}+\dfrac{5}{2}-\dfrac{7}{4}\)
\(=-1+\dfrac{5}{2}\)
\(=\dfrac{3}{2}\)
a, \(A=\left(\sqrt{2}+1\right)[\left(\sqrt{2}\right)^2+1][(\sqrt{2})^4+1][\left(\sqrt{2}\right)^8+1][1\left(\sqrt{2}\right)^{16}+1]\)
b, \(B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+1\sqrt{2020}}\)
c,\(C=^3\sqrt[]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}\)
a) Ta có: \(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2+1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)
\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2+1\right]\left[\left(\sqrt{2}\right)^2-1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)
\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^4-1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)
\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^8-1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)
\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^{16}-1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)
\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^{32}-1\right]\)
\(=65535\sqrt{2}+65535\)
b) Ta có: \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2020}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2020}-\sqrt{2019}\)
\(=\sqrt{2020}-1\)
\(=2\sqrt{505}-1\)
c) Ta có: \(C^3=26+15\sqrt{3}+26-15\sqrt{3}+3\cdot\sqrt[3]{\left(26+15\sqrt{3}\right)\left(26-15\sqrt{3}\right)}\cdot\left(\sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}\right)\)
\(\Leftrightarrow C^3=52+3\cdot C\)
\(\Leftrightarrow C^3-3\cdot C-52=0\)
\(\Leftrightarrow C^3-4C^2+4C^2-16C+13C-52=0\)
\(\Leftrightarrow C^2\left(C-4\right)+4C\left(C-4\right)+13\left(C-4\right)=0\)
\(\Leftrightarrow\left(C-4\right)\left(C^2+4C+13\right)=0\)
mà \(C^2+4C+13>0\)
nên C-4=0
hay C=4
Tính
a) \(2\sqrt{\dfrac{25}{16}}-3\sqrt{\dfrac{49}{36}}+4\sqrt{\dfrac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\dfrac{1}{2}}\right)^2+\dfrac{1}{16}.\left(\sqrt{\dfrac{3}{4}}\right)^2\)
c) \(\dfrac{2}{3}\sqrt{\dfrac{81}{16}}-\dfrac{3}{4}\sqrt{\dfrac{64}{9}}+\dfrac{7}{5}.\sqrt{\dfrac{25}{196}}\)
a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)
b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)
=10+3/64
=643/64
c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)
\(C=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+....\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(C=\dfrac{1\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\dfrac{1\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{1\left(\sqrt{3}-\sqrt{4}\right)}{\left(\sqrt{3}-\sqrt{4}\right)\left(\sqrt{3}+\sqrt{4}\right)}+........\dfrac{1\left(\sqrt{99}-\sqrt{100}\right)}{\left(\sqrt{99}-\sqrt{100}\right)\left(\sqrt{99}+\sqrt{100}\right)}\)
\(C=\dfrac{1-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+\dfrac{\sqrt{3}-\sqrt{4}}{3-4}+.....+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\)
\(C=\dfrac{1-\sqrt{2}}{-1}+\dfrac{\sqrt{2}-\sqrt{3}}{-1}+\dfrac{\sqrt{3}-\sqrt{4}}{-1}+......+\dfrac{\sqrt{99}-\sqrt{100}}{-1}\)
\(C=-\left(1-\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{4}\right)-......-\left(\sqrt{99}-\sqrt{100}\right)\)
\(C=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-......-\sqrt{99}+\sqrt{100}\)
\(C=-1+\sqrt{100}\)
\(C=10-1=9\)
Chứng minh rằng:
\(\dfrac{1}{3\left(\sqrt{2}+1\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+\dfrac{1}{7\left(\sqrt{4}+\sqrt{3}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)
\(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k}-\sqrt{k+1}}{k-k-1}=\sqrt{k+1}-\sqrt{k}\\ \Leftrightarrow\text{Đặt}\text{ }A=\dfrac{1}{3\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{2\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{2\left(\sqrt{2011}+\sqrt{2010}\right)}\\ \Leftrightarrow A< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{2011}+\sqrt{2010}}\right)\)
\(\Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2011}-\sqrt{2010}\right)\\ \Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2011}-1\right)< \dfrac{1}{2}\cdot\dfrac{\sqrt{2011}-1}{\sqrt{2011}}=\dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)
1) thực hiện phép tính
a) \(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)
b) \(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)
c) \(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}\)
giúp mk vs ạ mk đang cần gấp
a)\(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)
\(=2.\sqrt{\dfrac{4^2}{3}}-3.\sqrt{\dfrac{1}{3.3^2}}-6\sqrt{\dfrac{2^2}{3.5^2}}\)
\(=2.\dfrac{4}{\sqrt{3}}-3.\dfrac{1}{3\sqrt{3}}-6.\dfrac{2}{5\sqrt{3}}=\dfrac{8}{\sqrt{3}}-\dfrac{1}{\sqrt{3}}-\dfrac{12}{5\sqrt{3}}\)\(=\dfrac{23}{5\sqrt{3}}=\dfrac{23\sqrt{3}}{15}\)
b)\(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)
\(=6\sqrt{\dfrac{8}{9}.\dfrac{1}{2}}-5\sqrt{\dfrac{32}{25}.\dfrac{1}{2}}+14\sqrt{\dfrac{18}{49}.\dfrac{1}{2}}\)
\(=6\sqrt{\dfrac{4}{9}}-5\sqrt{\dfrac{16}{25}}+14\sqrt{\dfrac{9}{49}}\)\(=6.\dfrac{2}{3}-5.\dfrac{4}{5}+14.\dfrac{3}{7}=6\)
c)\(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}=\left|\sqrt{2}-2\right|-\sqrt{4+2.2\sqrt{2}+2}=2-\sqrt{2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=2-\sqrt{2}-\left(2+\sqrt{2}\right)=-2\sqrt{2}\)