Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

H24

Tính:

a) \(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5\)

b) \(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2\)

c) \(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)\)

d) \(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)

e) \(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)

MY
8 tháng 6 2021 lúc 19:22

a,\(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5=\left(\sqrt{\dfrac{25}{16}}-\dfrac{3}{4}\right):5=\left(\dfrac{5}{4}-\dfrac{3}{4}\right):5\)

\(=\dfrac{1}{2}:5=\dfrac{1}{10}\)

b,\(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2=\left[\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\right]^2\)

\(=\left[3-4\right]^2=1\)

c,\(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)=11^2-\left(4\sqrt{3}\right)^2\)

\(=121-48=73\)

d,\(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)

\(=2-2\sqrt{2}+1-3+\dfrac{4\sqrt{2}}{5}+\sqrt{\dfrac{36}{25}.2}\)

\(=-2\sqrt{2}+\dfrac{4\sqrt{2}+6\sqrt{2}}{5}\)

\(=-2\sqrt{2}+\dfrac{10\sqrt{2}}{5}=-2\sqrt{2}+2\sqrt{2}=0\)

e,\(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)

\(=\left(1+\sqrt{2021}\right)\sqrt{2021-2\sqrt{2021}.1+1}\)

\(=\left(1+\sqrt{2021}\right)\sqrt{\left(\sqrt{2021}-1\right)^2}\)

\(=\left(1+\sqrt{2021}\right)\left(\sqrt{2021}-1\right)\)

\(=\sqrt{2021}-1+\sqrt{2021^2}-\sqrt{2021}=2020\)

 

Bình luận (0)