Những câu hỏi liên quan
H24
Xem chi tiết
AH
4 tháng 1 2021 lúc 19:10

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24

Bình luận (0)
HT
Xem chi tiết
H24
Xem chi tiết
NT
19 tháng 7 2021 lúc 20:50

a) Ta có: \(A=x^2-5x+7\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

b) Ta có: \(B=2x^2-8x+15\)

\(=2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2+7\ge7\forall x\)

Dấu '=' xảy ra khi x=2

Bình luận (0)
TL
19 tháng 7 2021 lúc 20:51

a. `A=x^2-5x+7`

`=x^2-2.x. 5/2 + (5/2)^2 +3/4`

`=(x-5/2)^2 + 3/4`

`=> A_(min) =3/4 <=> x-5/2 =0<=>x=5/2`

b) `B=2x^2-8x+15`

`=[(\sqrt2x)^2 -2.\sqrt2 x . 2\sqrt2 +(2\sqrt2)^2] +7`

`=(\sqrt2x-2\sqrt2)^2+7`

`=> B_(min)=7 <=> x=2`.

Bình luận (0)
NT
19 tháng 7 2021 lúc 21:07

a) \(A=x^2-5x+7\)

\(=x^2-2.\dfrac{5}{2}x+\left(\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)

Mặt khác, ta có \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\)  \(\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu "=" xảy ra khi \(\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x-\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{5}{2}\) 

Vậy \(A_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{5}{2}\)

b) \(B=2x^2-8x+15\)

\(=4x^2-2.2x.2+2^2+11\)

\(=\left(2x-2\right)^2+11\)

Vì \(\left(2x-2\right)^2\ge0\forall x\) nên \(\left(2x-2\right)^2+11\ge11\forall x\)

Dấu "=" xảy ra khi  \(\left(2x-2\right)^2=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

Vậy \(B_{min}=11\) khi \(x=1\)

Bình luận (0)
DN
Xem chi tiết
H24
19 tháng 5 2021 lúc 16:13

Min của A là 99 khi (x;y)=(2;3).

Chúc abh học tốt.

Bình luận (0)
NL
19 tháng 5 2021 lúc 17:06

\(A=\left(x+\dfrac{4}{x}\right)+5\left(\dfrac{y}{3}+\dfrac{3}{y}\right)+17\left(x+y\right)\)

\(A\ge2\sqrt{\dfrac{4x}{x}}+5.2\sqrt{\dfrac{3y}{3y}}+17.5=99\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)

Bình luận (0)
NH
Xem chi tiết
KR
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Bình luận (0)
NT
Xem chi tiết
LL
2 tháng 9 2021 lúc 10:09

a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)

\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)

\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)

Bình luận (0)
NT
2 tháng 9 2021 lúc 14:14

a: Ta có: \(N=-x^2-x-1\)

\(=-\left(x^2+x+1\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: ta có: \(B=3x^2+4x-13\)

\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)

\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)

Bình luận (0)
H24
Xem chi tiết
AH
17 tháng 9 2021 lúc 8:23

a.

$A=x^2-8x+5=(x^2-8x+16)-11=(x-4)^2-11$

Do $(x-4)^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow A=(x-4)^2-11\geq 0-11=-11$

Vậy $A_{\min}=-11$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

b.

$B=2x^2+6x-4=2(x^2+3x+1,5^2)-\frac{17}{2}=2(x+1,5)^2-\frac{17}{2}$

$\geq 2.0-\frac{17}{2}=-\frac{17}{2}$

Vậy $B_{\min}=\frac{-17}{2}$ tại $x=-1,5$

Bình luận (0)
AH
17 tháng 9 2021 lúc 8:24

c. Biểu thức này không có min, chỉ có max

d.

$D=x^2-x+1=(x^2-2.\frac{1}{2}.x+\frac{1}{2^2})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}$

Vậy $D_{\min}=\frac{3}{4}$. Giá trị này đạt tại $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

Bình luận (0)
MW
Xem chi tiết
MW
Xem chi tiết