So sánh:2009^20 và 20092009^10
So sánh:
200920 và 2009200910
>_<
So sánh: 200920 và 2009200910
ta có : \(2009^{20}=2009^{10}.2009^{10}\) ; \(20092009^{10}=2009^{10}.10001^{10}\)
Mà \(2009^{10}.2009^{10}\)<\(2009^{10}.10001^{10}\)
=> \(2009^{20}< 20092009^{10}\)
So sánh: 200920 và 2009200910
Ta có:2009200910 = (2009.10001)10 = 200910.1000110 > 200910.200910 = 200920
\(2009^{20}=\left[\left(2009\right)^2\right]^{10}=4036081^{10}\)
mà \(4036081< 20092009\)
nên \(2009^{20}< 20092009^{10}\)
So sánh: 200920 và 2009200910
2009²⁰ = (2009²)¹⁰ = 4036081¹⁰
Do 4036081 < 20092009
⇒ 4036081¹⁰ < 20092009¹⁰
Vậy 2009²⁰ < 20092009¹⁰
So sánh: 200920 và 2009200910
\(2009^{20}=2009^{10}.2009^{10}\)
\(20092009^{10}=\left(10001.2009\right)^{10}=10001^{10}.2009^{10}\)
Vì \(2009^{10}=2009^{10}\) mà \(2009^{10}< 10001^{10}\) nên \(2009^{20}< 20092009^{10}\)
200920=200910.200910200920=200910.200910
2009200910=(10001.2009)10=1000110.2009102009200910=(10001.2009)10=1000110.200910
Vì 200910=200910200910=200910 mà 200910<1000110200910<1000110 nên 200920<2009200910
Bài toán 1. So sánh: 200920 và 2009200910
Ta có: \(2009^{20}=\left(2009^2\right)^{10}=\left(2009\cdot2009\right)^{10}\)
\(20092009^{10}=\left(2009\cdot10001\right)^{10}\)
mà \(2009< 10001\)
nên \(2009^{20}< 20092009^{10}\)
200920 và 2009200910
200910\(^{ }\) .200910 và 20092009 10;
=4036081 10 và 20092009 10
4036081 10 > 20092009 10
Bài toán 1. So sánh: 200920 và 2009200910
Ta có:2009200910 = (2009.10001)10 = 200910.1000110 > 200910.200910 = 200920
200920200920 và 2009200910.2009200910.
Ta có:
200920=(20092)10=(2009.2009)10.200920=(20092)10=(2009.2009)10.
2009200910=(2009.10001)10.2009200910=(2009.10001)10.
Vì 2009.2009<2009.100012009.2009<2009.10001
⇒(2009.2009)10<(2009.10001)10⇒(2009.2009)10<(2009.10001)10
⇒200920<2009200910.
So sánh: 200920 và 2009.200910
cho tam giac ABC tren canh BC lay 1 diem Q sao cho CQ =BQ tu Q ke sang AC tai K KB cac AQ tai I
so sanh dien tich tam giac abk va aqb
so sanh dien tich tam giac cbk va abk
so sanh ck va ak
so sanh ab va kq
cho hinh thang ABCD goi K la diem chinh giua cuaDC. AC va BD cat tai M
A, so sanh dien tich AMB va CMB
b, so sanh dien tich ADKM va dien tich CBMK
C, Keo dai KM cat AB tai M . So sanh AN va NB