\(\lim\limits\sqrt[3]{7x^2-x^3}\)
a) \(\lim\limits_{x\rightarrow+\infty}\)\(^{3_{\sqrt{x^3+4x^2}-x}}\)
b) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{4x-1}{x-1}neux>1\\7x+1neux< 1\end{matrix}\right.\)
Tính \(\lim\limits f\left(x\right)_{x\rightarrow1^+}\) , \(\lim\limits f\left(x\right)_{x\rightarrow1^-}\)
a.
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{x^3+4x^2}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{4x^2}{\sqrt[3]{\left(x^3+4x^2\right)^2}+x\sqrt[3]{x^3+4x^2}+x^2}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{4}{\sqrt[3]{\left(1+\dfrac{4}{x}\right)^2}+\sqrt[3]{1+\dfrac{4}{x}}+1}=\dfrac{4}{1+1+1}=\dfrac{4}{3}\)
b.
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{4x-1}{x-1}=\dfrac{3}{0}=+\infty\)
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(7x+1\right)=8\)
Tính các giới hạn sau:
a) \(\lim\limits\dfrac{\sqrt[3]{n^6-7n^3-5n+8}}{n+12}\)
b) \(\lim\limits\dfrac{1}{\sqrt{3n+2}-\sqrt{2n+1}}\)
c) \(\lim\limits\dfrac{4.3^n+7^{n+1}}{2.5^n+7^n}\)
a.
\(A=\lim\frac{\sqrt[3]{n^6-7n^3-5n+8}}{n+12}=\lim \frac{\sqrt[3]{\frac{n^6-7n^3-5n+8}{n^3}}}{\frac{n+12}{n}}=\lim \frac{\sqrt[3]{n^3-7-\frac{5}{n^2}+\frac{8}{n^3}}}{1+\frac{12}{n}}\)
Ta thấy:
\(\lim\sqrt[3]{n^3-7-\frac{5}{n^2}+\frac{8}{n^3}}=\infty \)
\(\lim (1+\frac{12}{n})=1\)
Suy ra $A=\infty$
b.
\(B=\lim\frac{1}{\sqrt{3n+2}-\sqrt{2n+1}}=\lim \frac{1}{\frac{3n+2-(2n+1)}{\sqrt{3n+2}+\sqrt{2n+1}}}=\lim \frac{\sqrt{3n+2}+\sqrt{2n+1}}{n+1}\)
\(=\lim \frac{\sqrt{\frac{3n+2}{n}}+\sqrt{\frac{2n+1}{n}}}{\frac{n+1}{\sqrt{n}}}=\lim \frac{\sqrt{3+\frac{2}{n}}+\sqrt{2+\frac{1}{n}}}{\sqrt{n}+\frac{1}{\sqrt{n}}}\)
Ta thấy:
\(\lim( \sqrt{3+\frac{2}{n}}+\sqrt{2+\frac{1}{n}})=\sqrt{3}+\sqrt{2}>0\)
\(\lim (\sqrt{n}+\frac{1}{\sqrt{n}})=\infty\)
$\Rightarrow B=\infty$
c.
\(C=\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{4(\frac{3}{7})^n+7}{2(\frac{5}{7})^n+1}\)
Ta thấy:
\(\lim [4(\frac{3}{7})^n+7]=4.0+7=7\) với $|\frac{3}{7}|<1$
\(\lim [2(\frac{5}{7})^n+1]=2.0+1=1\) với $|\frac{5}{7}|<1$
$\Rightarrow C=\frac{7}{1}=7$
Tính các giới hạn sau :
a) \(\lim\limits\left(n^3+2n^2-n+1\right)\)
b) \(\lim\limits\left(-n^2+5n-2\right)\)
c) \(\lim\limits\left(\sqrt{n^2-n}-n\right)\)
d) \(\lim\limits\left(\sqrt{n^2-n}+n\right)\)
a) lim (n3 + 2n2 – n + 1) = lim n3 (1 + ) = +∞
b) lim (-n2 + 5n – 2) = lim n2 ( -1 + ) = -∞
c) lim ( - n) = lim
= lim = lim = lim = .
d) lim ( + n) = lim ( + n) = lim n ( + 1) = +∞.
Tìm các giới hạn
1. lim ( x đến +--∞) (x3 +3x2+2)
2. lim (x đến -∞) (\(\sqrt{4x^2-x+5}\))
3. lim ( x đến +- ∞) (\(\sqrt{x^2-2x-1}-\sqrt{x^2-7x+3}\))
1.
\(\lim\limits_{x\to +\infty}(x^3+3x^2+2)=+\infty\)
2.
\(\lim\limits_{x\to -\infty}\sqrt{4x^2-x+5}=\lim\limits_{x\to -\infty}-x.\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}=+\infty\) do $-x\to +\infty$ và $\lim\limits_{x\to -\infty}\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}=4>0$
3.
\(\lim\limits_{x\to +\infty}(\sqrt{x^2-2x-1}-\sqrt{x^2-7x+3})=\lim\limits_{x\to +\infty}\frac{x^2-2x-1-(x^2-7x+3)}{\sqrt{x^2-2x-1}+\sqrt{x^2-7x+3}}\)
\(=\lim\limits_{x\to +\infty}\frac{5x-4}{\sqrt{x^2-2x-1}+\sqrt{x^2-7x+3}}=\lim\limits_{x\to +\infty}\frac{5-\frac{4}{x}}{\sqrt{1-\frac{2}{x}-\frac{1}{x^2}}+\sqrt{1-\frac{7}{x}+\frac{3}{x^2}}}\)
\(=\frac{5}{1+1}=\frac{5}{2}\)
Tính các giới hạn sau :
a) \(\lim\limits\left(n^2+2n-5\right)\)
b) \(\lim\limits\left(-n^3-3n^2-2\right)\)
c) \(\lim\limits\left[4^n+\left(-2\right)^n\right]\)
d) \(\lim\limits n\left(\sqrt{n^2-1}-\sqrt{n^2+2}\right)\)
Tìm các giới hạn sau:
a) \(\lim\limits\left(\sqrt{2n^2+3}-\sqrt{n^2+1}\right)\)
b) \(\lim\limits\dfrac{1}{\sqrt{n+1}-\sqrt{n}}\)
\(\lim\limits\left(\sqrt{2n^2+3}-\sqrt{n^2+1}\right)=\lim\limits\frac{n^2-2}{\left(\sqrt{2n^2+3}+\sqrt{n^2+1}\right)}=\lim\limits\frac{n-\frac{2}{n}}{\sqrt{2+\frac{3}{n^2}}+\sqrt{1+\frac{1}{n^2}}}=+\infty\)
\(\lim\limits\frac{1}{\sqrt{n+1}-\sqrt{n}}=\lim\limits\left(\sqrt{n+1}+\sqrt{n}\right)=+\infty\)
Bài 1. Tìm các giới hạn sau:
a) \(\lim\limits\dfrac{-2n+1}{n}\)
b) \(\lim\limits_{x\rightarrow1}\dfrac{3-\sqrt{x+8}}{x-1}\)
a) \(lim\dfrac{-2n+1}{n}=lim\dfrac{\dfrac{-2n}{n}+\dfrac{1}{n}}{\dfrac{n}{n}}=lim\dfrac{-2+\dfrac{1}{n}}{1}=\dfrac{lim\left(-2\right)+\dfrac{lim1}{n}}{lim1}=\dfrac{-2+0}{1}=-\dfrac{2}{1}=-2\)
b) \(\lim\limits_{x\rightarrow1}\dfrac{3-\sqrt{x+8}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{9-\left(x+8\right)}{\left(x-1\right)\left(3+\sqrt{x+8}\right)}=\lim\limits_{x\rightarrow1}\dfrac{x-1}{\left(x-1\right)\left(3+\sqrt{x+8}\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{3+\sqrt{x+8}}=\dfrac{1}{3+\sqrt{1+8}}=\dfrac{1}{3+3}=\dfrac{1}{9}\)
\(\lim\limits\left[\left(1-n\right)\left(\sqrt{n^2-6n}-\sqrt[3]{n^3-27n^2}\right)\right]\)
\(\left(1-n\right)\left(\dfrac{-6n}{\sqrt[2]{n^2-6n}+n}+\dfrac{27n^2}{n^2+n\sqrt[3]{n^3-27n^2}+\sqrt[3]{\left(n^3-27n^2\right)^2}}\right)\)
Ngoặc sau giới hạn hữu hạn tới \(\dfrac{27}{3}-\dfrac{6}{2}=6>0\), ngoặc trước tới âm vô cùng, nên giới hạn bằng âm vô cùng
Tính các giới hạn sau (\(n\rightarrow+\infty\) )
a) \(\lim\limits\dfrac{\left(-3\right)^n+2.5^n}{1-5^n}\)
b) \(\lim\limits\dfrac{1+2+3+....+n}{n^2+n+1}\)
c) \(\lim\limits\left(\sqrt{n^2+2n+1}-\sqrt{n^2+n-1}\right)\)