Những câu hỏi liên quan
NN
Xem chi tiết
VI

Vì \(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^0\Leftrightarrow BC^2=AB^2+AC^2\) ( ĐL Pytago )

Vì \(\frac{AB}{AC}=\frac{8}{15}\Leftrightarrow\frac{AB}{8}=\frac{AC}{15}\Leftrightarrow\frac{AB^2}{8^2}=\frac{AC^2}{15^2}\). Áp dụng t/c dãy tỉ số bằng nhau

Ta có : \(\frac{AB^2}{8^2}=\frac{AC^2}{15^2}=\frac{AB^2+AC^2}{8^2+15^2}=\frac{BC^2}{64+225}=\frac{2061}{289}=9\)

\(\frac{AB^2}{8^2}=9\Leftrightarrow\sqrt{\frac{AB^2}{8^2}}=\sqrt{9}\Leftrightarrow\frac{AB}{8}=3\Leftrightarrow AB=3.8=24\left(cm\right)\)

\(\frac{AC^2}{15^2}=9\Leftrightarrow\sqrt{\frac{AC^2}{15^2}}=\sqrt{9}\Leftrightarrow\frac{AC}{15}=3\Leftrightarrow AC=15.3=45\left(cm\right)\)

Chu vi \(\Delta ABC=24+45+51=120\left(cm\right)\)

Diện tích \(\Delta ABC=\frac{a\times h}{2}=\frac{24\times45}{2}=\frac{1080}{2}=540\left(cm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TK
Xem chi tiết
CD
Xem chi tiết
CD
4 tháng 2 2019 lúc 12:52

Trả lời giúp mk vs 

Bình luận (0)
LL
4 tháng 2 2019 lúc 12:55

Ta có: AB; AC tỉ lệ với 8; 15

=> AB = 815815 AC

Ta có: tam giác ABC vuông tại A

=> BC2 = AB2 + AC2

=> 1022 =( 815815AC)2 + AC2

=> 10404 = 6422564225 . AC2 + AC2

=> 10404 = AC2. (64225+164225+1)

=> 10404 = AC2 . 289225289225

=> AC2 = 10404 : 289225289225 = 8100

=> AC2 = 902

=> AC = 90 cm

Ta có: AB = 815815AC

=> AB = 815.90815.90=48 cm

Vậy AB = 48 cm

AC = 90 cm

T I C K mk nha

Bình luận (0)
CD
Xem chi tiết
NV
Xem chi tiết
NT
30 tháng 1 2021 lúc 13:05

Ta có: \(\dfrac{AB}{AC}=\dfrac{8}{15}\)(gt)

nên \(AB=\dfrac{8}{15}\cdot AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(\dfrac{8}{15}\cdot AC\right)^2+AC^2=102^2\)

\(\Leftrightarrow\dfrac{64}{225}AC^2+AC^2=102^2\)

\(\Leftrightarrow\dfrac{289}{225}AC^2=102^2\)

\(\Leftrightarrow AC^2=102^2:\dfrac{289}{225}=8100\)

hay AC=90(cm)

Ta có: \(AB=AC\cdot\dfrac{8}{15}\)(cmt)

nên \(AB=90\cdot\dfrac{8}{15}=48\left(cm\right)\)

Vậy: AC=90cm; AB=48cm

Bình luận (0)
TL
Xem chi tiết
DN
31 tháng 1 2015 lúc 20:28

vận dụng py-ta-go

bạn à

Bình luận (0)
NH
Xem chi tiết
PQ
19 tháng 2 2019 lúc 21:15

a) Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{51^2}{289}\)
\(\Rightarrow\frac{AB}{8}=\frac{AC}{15}=\frac{51}{17}\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
b) \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=300\left(cm^2\right)\)
 

Bình luận (0)
ND
19 tháng 2 2019 lúc 21:23

A B C

Xét tam giác ABC vuông tại A theo định lí Py-ta-go ta đc

AB2+AC2=BC2=2601(1)

Lại có\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB^2}{AC^2}=\frac{64}{225}\)

\(\Rightarrow AC^2=\frac{AB^2.225}{64}\)

Thay vào (1) ta đc

\(AB^2+\frac{AB^2.225}{64}=2601\)

\(\Rightarrow\frac{AB^2.289}{64}=2601\Rightarrow AB^2=576\)

\(\Rightarrow\hept{\begin{cases}AB=\sqrt{576}=24\left(cm\right)\\AC^2=BC^2-AB^2=2025\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)

Vậy ........

b, ta có \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)

tk mk nhé

Bình luận (0)
LD
7 tháng 5 2020 lúc 21:39

a) Theo định lí Pytago ta có :

BC2 = AB2 + AC2

=> AB2 + AC2 = 512 = 2601

\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{8^2}=\frac{AC^2}{15^2}\)và AB2 + AC2 = 2601

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{AB^2}{8^2}=\frac{AC^2}{15^2}=\frac{AB^2+AC^2}{8^2+15^2}=\frac{2601}{289}=9\)

\(\frac{AB^2}{8^2}=9\Rightarrow AB=\sqrt{9\cdot8^2}=24\left(cm\right)\)

\(\frac{AC^2}{15^2}=9\Rightarrow AC=\sqrt{9\cdot15^2}=45\left(cm\right)\)

b) \(S_{\Delta ABC}=\frac{AB\cdot AC}{2}=\frac{24\cdot45}{2}=540cm^2\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
23 tháng 7 2021 lúc 13:34

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

Bình luận (0)
H24
Xem chi tiết