Những câu hỏi liên quan
NT
Xem chi tiết
TH
16 tháng 2 2021 lúc 16:18

Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\) 

Lại có: \(4\sqrt{x}\ge0\) với mọi x

\(3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]>0\) với mọi x

\(\Rightarrow\) \(\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\ge0\) với mọi x

Dấu "=" xảy ra \(\Leftrightarrow\) x = 0

Vậy ...

Chúc bn học tốt! (Mk ms nghĩ ra được GTNN thôi thông cảm!)

Bình luận (0)
TH
16 tháng 2 2021 lúc 16:31

Còn tìm GTLN:

Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-1\right)^2+\sqrt{x}\right]}\le\dfrac{4\sqrt{x}}{3\sqrt{x}}=\dfrac{4}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\) \(\sqrt{x}-1=0\) \(\Leftrightarrow\) x = 1

Vậy ...

Chúc bn học tốt!

Bình luận (0)
ND
Xem chi tiết
TA
4 tháng 7 2023 lúc 9:11

\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{x+2\sqrt{2\left(x-2\right)}}+\sqrt{x-2\sqrt{2\left(x-2\right)}}=2\sqrt{2}\)

\(\Leftrightarrow2x+2\sqrt{\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]}=8\)

\(\Leftrightarrow2\sqrt{\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]}=8-2x\)

\(\Leftrightarrow4\left[x+2\sqrt{2\left(x-2\right)}\text{ }\right]\left[x-2\sqrt{2\left(x-2\right)}\text{ }\right]=64-32x+4x^2\)

\(\Leftrightarrow4x^2-32x+64=64-32x+4x^2+\)

\(\Leftrightarrow64=64\) (Đúng)

⇒ Phương trình có vô số nghiệm.

Vậy \(S=\mathbb R\).

Bình luận (6)
GH
4 tháng 7 2023 lúc 9:16

\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=2\sqrt{2}\)

ĐK: \(x\ge2\), PT tương đương với:

\(x+2\sqrt{2x-4}+2\sqrt{\left(x+2\sqrt{2x-4}\right)\left(x-2\sqrt{2x-4}\right)}+x-2\sqrt{2x-4}=8\)

\(\Leftrightarrow2x+2\sqrt{x^2-4\left(2x-4\right)}=8\)

\(\Leftrightarrow2x+2\sqrt{x^2-8x+16}=8\\ \Leftrightarrow x+\left|x-4\right|=8\)

Với x < 4 => \(x+4-x=8\)

\(\Leftrightarrow4=8\) (loại)

Với \(x\ge4\) => \(x+x-4=8\)

\(\Leftrightarrow x=6\) (thỏa mãn)

Bình luận (6)
MT
Xem chi tiết
NL
20 tháng 7 2021 lúc 12:43

a.

ĐKXĐ: \(x>0\)

\(\sqrt{x\left(x+3\right)}+2\sqrt{x+2}=2x+\sqrt{\dfrac{\left(x+2\right)\left(x+3\right)}{x}}\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-\sqrt{x+3}\right)+\sqrt{\dfrac{x+2}{x}}\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\dfrac{4x-x-3}{2\sqrt{x}+\sqrt{x+3}}\right)-\sqrt{\dfrac{x+2}{x}}\left(\dfrac{4x-x-3}{\sqrt{x+3}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-1\right)}{2\sqrt{x}+\sqrt{x+3}}\left(\sqrt{x}-\sqrt{\dfrac{x+2}{x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{x+2}{x}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
NL
20 tháng 7 2021 lúc 12:43

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2};x\ne1-\sqrt{2}\)

\(x+2+x\sqrt{2x+1}=x\sqrt{x+2}+\sqrt{\left(x+2\right)\left(2x+1\right)}\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{2x+1}-\sqrt{x+2}\right)-x\left(\sqrt{2x+1}-\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{x+2}\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=\sqrt{x+2}\\\sqrt{x+2}=x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+2\\x^2-x-2=0\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
ND
Xem chi tiết
LP
3 tháng 9 2023 lúc 22:03

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

Bình luận (0)
NT
Xem chi tiết
LP
15 tháng 6 2015 lúc 17:50

khó quá                

Bình luận (2)
ND
17 tháng 9 2016 lúc 17:16

HREYHRFGT

Bình luận (0)
TN
6 tháng 11 2016 lúc 19:26

toán lớp mấy vậy bạn

Bình luận (0)
DH
Xem chi tiết
NT
11 tháng 11 2021 lúc 22:04

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

Bình luận (0)
NT
Xem chi tiết
SN
Xem chi tiết
TP
9 tháng 8 2019 lúc 20:20

ĐK:....

\(\sqrt{x+\sqrt{x+11}}+\sqrt{x-\sqrt{x+11}}=4\)

\(\Leftrightarrow\left(\sqrt{x+\sqrt{x+11}}+\sqrt{x-\sqrt{x+11}}\right)\left(\sqrt{x+\sqrt{x+11}}-\sqrt{x-\sqrt{x+11}}\right)=4\left(\sqrt{x+\sqrt{x+11}}-\sqrt{x-\sqrt{x+11}}\right)\)

\(\Leftrightarrow x+\sqrt{x+11}-x+\sqrt{x+11}=4\left(\sqrt{x+\sqrt{x+11}}-\sqrt{x-\sqrt{x+11}}\right)\)

\(\Leftrightarrow2\sqrt{x+11}=4\sqrt{x+\sqrt{x+11}}-4\sqrt{x-\sqrt{x+11}}\)

\(\Leftrightarrow2\left(\sqrt{x+\sqrt{x+11}}-\sqrt{x-\sqrt{x+11}}\right)=\sqrt{x+11}\)

\(\Leftrightarrow4\left(x+\sqrt{x+11}+x-\sqrt{x+11}-2\sqrt{\left(x+\sqrt{x+11}\right)\left(x-\sqrt{x+11}\right)}\right)=x+11\)

\(\Leftrightarrow4\left(2x-2\sqrt{x^2-x-11}\right)=x+11\)

\(\Leftrightarrow8x-8\sqrt{x^2-x-11}=x+11\)

\(\Leftrightarrow8\sqrt{x^2-x-11}=7x-11\)

\(\Leftrightarrow64\left(x^2-x-11\right)=\left(7x-11\right)^2\)

\(\Leftrightarrow64x^2-64x-704=49x^2-154x+121\)

\(\Leftrightarrow15x^2+90x-825=0\)

\(\Leftrightarrow15x^2-75x+165x-825=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(chon\right)\\x=-11\left(loai\right)\end{matrix}\right.\)

Vậy...

Bình luận (0)
NT
Xem chi tiết
NL
6 tháng 8 2021 lúc 21:44

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

Bình luận (0)
NL
6 tháng 8 2021 lúc 21:46

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

Bình luận (0)
NL
6 tháng 8 2021 lúc 21:49

3.

ĐKXĐ: \(x\ge-1\)

\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Bình luận (0)