Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DA
Xem chi tiết
PB
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
27 tháng 11 2023 lúc 8:29

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

=>\(2\left(ab+bc+ac\right)=0\)

=>ab+bc+ac=0

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

=>\(\dfrac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{3}{abc}\)

=>\(\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3\cdot ab\cdot bc\cdot\left(ab+bc\right)+\left(ac\right)^3=3\left(abc\right)^2\)

=>\(\left(-ac\right)^3-3\cdot ab\cdot bc\cdot\left(-ac\right)+\left(ac\right)^3-3\left(abc\right)^2=0\)

=>\(-a^3c^3+a^3c^3+3a^2b^2c^2-3a^2b^2c^2=0\)

=>0=0(đúng)

Bình luận (0)
TH
Xem chi tiết
NV
25 tháng 8 2023 lúc 13:47

Cần gấp ko bạn

Nếu gấp thì sang web khác thử

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
3 tháng 4 2019 lúc 16:23

Trong tam giác ABC, theo Hệ quả định lý Cô sin ta luôn có :

Giải bài 8 trang 62 sgk Hình học 10 | Để học tốt Toán 10

Mà ta có 2.bc > 0 nên cos A luôn cùng dấu với b2 + c2 – a2.

a) Góc A nhọn ⇔ cos A > 0 ⇔ b2 + c2 – a2 > 0 ⇔ a2 < b2 + c2.

b) Góc A tù ⇔ cos A < 0 ⇔ b2 + c2 – a2 < 0 ⇔ a2 > b2 + c2.

c) Góc A vuông ⇔ cos A = 0 ⇔ b2 + c2 – a2 = 0 ⇔ a2 = b2 + c2.

Bình luận (0)
NL
Xem chi tiết
LC
18 tháng 2 2020 lúc 14:38

86 vì ta học lớp 9

Bình luận (0)
 Khách vãng lai đã xóa
KN
18 tháng 2 2020 lúc 14:38

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)

\(+c\left(a^2b^2-a^2-b^2+1\right)\)

\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)

\(+ca^2b^2-a^2c-b^2c+c\)

\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)

\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
NT
6 tháng 1 2022 lúc 10:47

a: \(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)

hay \(\left(a-1\right)^2>=0\)(luôn đúng)

b: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)=VP\)

Bình luận (1)
H24
Xem chi tiết
VH
11 tháng 12 2020 lúc 23:19

1/a+1/b+1/c=0

=>(ab+ac+bc)/abc=0

=> ab+ac+bc=0

(a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)=0

=> a^2+b^2+c^2=0

Bạn xem lại đề nhé.

Bình luận (0)
ND
Xem chi tiết
NL
25 tháng 7 2021 lúc 18:06

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Bình luận (0)
NT
25 tháng 7 2021 lúc 19:11

Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Bình luận (0)
HC
25 tháng 7 2021 lúc 19:19

a2+b2+c2=ab+bc+caa2+b2+c2=ab+bc+ca

⇔2a2+2b2+2c2=2ab+2bc+2ca⇔2a2+2b2+2c2=2ab+2bc+2ca

⇔(a2−2ab+b2)+(b2−2bc+c2)+(c2−2ca+a2)=0⇔(a2−2ab+b2)+(b2−2bc+c2)+(c2−2ca+a2)=0

⇔(a−b)2+(b−c)2+(c−a)2=0⇔(a−b)2+(b−c)2+(c−a)2=0

⇔⎧⎪⎨⎪⎩a−b=0b−c=0c−a=0⇔{a−b=0b−c=0c−a=0 ⇔a=b=c

Bình luận (0)