Những câu hỏi liên quan
NC
Xem chi tiết
DH
Xem chi tiết
TK
11 tháng 1 2022 lúc 19:33
Not biếtmdnhdhd
Bình luận (0)
 Khách vãng lai đã xóa
TM
11 tháng 1 2022 lúc 20:33

Hummmm

Bình luận (0)
 Khách vãng lai đã xóa
HT
12 tháng 1 2022 lúc 19:48

Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ

Bình luận (0)
 Khách vãng lai đã xóa
9L
Xem chi tiết
NM
12 tháng 12 2021 lúc 13:52

Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\\sqrt{x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+2xb-2x-ab=0\\ \Leftrightarrow2x\left(b-1\right)-a\left(b-1\right)=0\\ \Leftrightarrow\left(2x-a\right)\left(b-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=a\\b=1\end{matrix}\right.\)

Với \(2x=a\Leftrightarrow x+3=4x^2\left(x\ge0\right)\Leftrightarrow x=1\left(tm\right)\)

Với \(b=1\Leftrightarrow x+1=1\Leftrightarrow x=0\left(tm\right)\)

Vậy PT có nghiệm \(x\in\left\{0;1\right\}\)

Bình luận (0)
DD
11 tháng 1 2022 lúc 9:08

Scp  iiaoskkkak

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
NT
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Bình luận (0)
LT
Xem chi tiết
NM
20 tháng 9 2021 lúc 8:26

\(ĐK:x\ge-\dfrac{3}{2}\\ \Leftrightarrow\sqrt{\left(2x-3\right)\left(2x+3\right)}-2\sqrt{2x+3}=0\\ \Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\\sqrt{2x-3}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\2x-3=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
LL
20 tháng 9 2021 lúc 8:27

\(\sqrt{4x^2-9}=2\sqrt{2x+3}\left(đk:x\ge\dfrac{3}{2}\right)\)

\(\Leftrightarrow4x^2-9=4\left(2x+3\right)\)

\(\Leftrightarrow4x^2-9=8x+12\)

\(\Leftrightarrow4x^2-8x-21=0\)

\(\Leftrightarrow\left(2x-7\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\left(tm\right)\\x=-\dfrac{3}{2}\left(ktm\right)\end{matrix}\right.\)

Bình luận (1)
TN
Xem chi tiết
NM
22 tháng 9 2021 lúc 8:24

\(ĐK:x\le-\dfrac{3}{2};\dfrac{3}{2}\le x\\ Pt\Leftrightarrow\sqrt{\left(2x+3\right)\left(2x-3\right)}-2\sqrt{2x+3}=0\\ \Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=0\\\sqrt{2x-3}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\2x-3=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
HT
22 tháng 9 2021 lúc 8:25

\(\sqrt{4x^2-9}=2\sqrt{2x+3}\) đk \(x\ge\dfrac{3}{2}\)

\(\Leftrightarrow4x^2-9=4\left(2x+3\right)\)

\(\Leftrightarrow4x^2-9=8x+12\)

\(\Leftrightarrow4x^2-8x-21=0\)

\(\Leftrightarrow\left(2x-7\right)\left(2x+3\right)=0\)

\(\left[{}\begin{matrix}x=\dfrac{7}{2}\left(nhận\right)\\x=-\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)

Vậy S=\(\left\{\dfrac{7}{2}\right\}\)

Bình luận (2)
LD
Xem chi tiết
KK
16 tháng 8 2020 lúc 11:00

Đặt: \(\sqrt{2x+1}=a,\sqrt{3-2x}=b\)

Từ đó: \(\sqrt{4x-4x^2+3}=ab\)và \(4=a^2+b^2\)

Từ đó biến đổi và giải phương trình. Đây là một cách. (T chưa giải ra :V)

Bình luận (0)
 Khách vãng lai đã xóa
KK
16 tháng 8 2020 lúc 11:10

Hoặc là không cần đặt ẩn phụ, biến đổi luôn:

VT=\(\frac{\left(2x-1\right)^2.\left(2x+1\right)\left(3-2x\right)}{\left(2x+1\right)+\left(3-2x\right)}\)

VP=\(\sqrt{2x+1}+\sqrt{3-2x}+2\sqrt{2x+1}.\sqrt{3-2x}+\left(\sqrt{2x+1}\right)^2+\left(\sqrt{3-2x}\right)^2\)

=\(\left(\sqrt{2x+1}+\sqrt{3x+2}\right)\left(\sqrt{2x+1}+\sqrt{3x+2}+1\right)\)

Đến đây có vẻ đơn giản r :>

Bình luận (0)
 Khách vãng lai đã xóa
TL
16 tháng 8 2020 lúc 17:17

\(\frac{\left(2x-1\right)^2\left(4x^2-4x+3\right)}{4}=\sqrt{2x+1}+\sqrt{3-2x}+2\sqrt{4x-4x^2}\)

\(\Leftrightarrow\sqrt{2x+1}+\sqrt{3-2x}=\frac{\left(2x-1\right)^2}{2}\)

\(\Leftrightarrow8\left(\sqrt{2x+1}+\sqrt{3-2x}\right)=4\left(2x-1\right)^2\)

\(\Leftrightarrow8\left(\sqrt{2x+1}+\sqrt{3-2x}\right)=\left[\left(2x+1\right)-\left(3-2x\right)\right]^2\) (**)

đặt \(\hept{\begin{cases}\sqrt{2a+1}=a\ge0\\\sqrt{3-2x}=b\ge0\end{cases}}\)thì phương trình (**) trở thành

\(\hept{\begin{cases}8\left(x+b\right)=\left(a^2-b^2\right)^2\\a^2+b^2=4\end{cases}}\Leftrightarrow\hept{\begin{cases}8\left(a+b\right)=\left(a^2+b^2\right)^2-4a^2b^2\left(1\right)\\a^2+b^2=4\left(2\right)\end{cases}}\)

từ (1) \(\Rightarrow8\left(a+b\right)=16-4a^2b^2\Leftrightarrow2\left(a+b\right)=4-a^2b^2\)

\(\Leftrightarrow4\left(a^2+b^2+2ab\right)=16-8a^2b^2+a^4b^4\)(***)

đặt ab=t \(\left(0\le t\le2\right)\)thì phương trình (***) trở thành

\(16+8t=16-8t^2+t^4\Leftrightarrow t\left(t+2\right)\left(t^2-2t-4\right)=0\)

\(\begin{matrix}t=0\left(tm\right)\\t=-2\left(loại\right)\\t=1+\sqrt{5}\left(loại\right)\\t=1-\sqrt{5}\left(loại\right)\end{matrix}\)vậy t=0 \(\Rightarrow\hept{\begin{cases}\sqrt{2x+1}+\sqrt{3-2x}=2\\\sqrt{2x+1}\cdot\sqrt{3-2x}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NL
7 tháng 2 2021 lúc 10:50

a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)

 PT <=> 2x - 1 = 5

<=> x = 3 ( TM )

Vậy ...

b, ĐKXĐ : \(x\ge5\)

PT <=> x - 5 = 9

<=> x = 14 ( TM )

Vậy ...

c, PT <=> \(\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy ...

d, PT<=> \(\left|x-3\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)

e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)

PT <=> 2x + 5 = 1 - x

<=> 3x = -4

<=> \(x=-\dfrac{4}{3}\left(TM\right)\)

Vậy ...

f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)

PT <=> \(x^2-x=3-x\)

\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )

Vậy ...

 

 

Bình luận (0)
TT
7 tháng 2 2021 lúc 11:02

a) \(\sqrt{2x-1}=\sqrt{5}\)          (x \(\ge\dfrac{1}{2}\))

<=> 2x - 1 = 5

<=> x = 3 (tmđk)

Vậy S = \(\left\{3\right\}\)

b) \(\sqrt{x-5}=3\)           (x\(\ge5\))

<=> x - 5 = 9

<=> x = 4 (ko tmđk)

Vậy x \(\in\varnothing\)

c) \(\sqrt{4x^2+4x+1}=6\)          (x \(\in R\))

<=> \(\sqrt{\left(2x+1\right)^2}=6\)

<=> |2x + 1| = 6

<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)

Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)

 

Bình luận (0)
BL
Xem chi tiết
NL
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Bình luận (0)
NL
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Bình luận (0)
NL
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

Bình luận (0)