Những câu hỏi liên quan
DY
Xem chi tiết
DY
Xem chi tiết
NL
23 tháng 10 2021 lúc 20:52

Đề bài không đúng em nhé

Đặt \(f\left(\left|x\right|\right)=t\) thì ứng với mỗi giá trị t chỉ cho tối đa 4 nghiệm x

Phương trình trở thành:

\(t-\left(m+1\right)\left|t\right|+m=0\)

\(\Leftrightarrow t-\left|t\right|=m\left(\left|t\right|-1\right)\) (1)

- Với \(t\ge0\) \(\Rightarrow t-t=m\left(t-1\right)\Leftrightarrow m\left(t-1\right)=0\)

+ Với \(m=0\Rightarrow\) pt có vô số nghiệm (ko thỏa mãn)

+ Với \(m\ne0\Rightarrow t=1\Rightarrow f\left(\left|x\right|\right)=1\) có tối đa 4 nghiệm (ktm)

- Với t<0, (1) trở thành:

\(2t=-m\left(t+1\right)\)

Với \(t=-1\) ko phải nghiệm, với \(t\ne-1\) pt trở thành:

\(-m=\dfrac{2t}{t+1}\) (2)

Do \(\dfrac{2t}{t+1}\) đồng biến trên R nên (2) có tối đa 1 nghiệm t

\(\Rightarrow f\left(\left|x\right|\right)=t\) có tối đa 4 nghiệm (ít hơn 8 nghiệm) \(\Rightarrow\) ktm

Do đó không tồn tại m thỏa mãn bài toán

Bình luận (0)
H24
Xem chi tiết
HP
26 tháng 1 2021 lúc 20:11

Đồ thị hàm số \(y=f\left(\left|x\right|\right)\)

\(f^2\left(\left|x\right|\right)+\left(m-1\right)f\left(\left|x\right|\right)-m=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=1\left(2\right)\\f\left(\left|x\right|\right)=-m\left(3\right)\end{matrix}\right.\)

Từ đồ thị ta thấy phương trình \(\left(2\right)\) có hai nghiệm phân biệt nên phương trình \(\left(1\right)\) có hai nghiệm phân biệt khi phương trình \(\left(3\right)\) có hai nghiệm phân biệt khác hai nghiệm của phương trình \(\left(2\right)\).

\(\Leftrightarrow\left[{}\begin{matrix}-m=-3\\-1< -m< 1\\-m>1\end{matrix}\right.\)

...

Bình luận (0)
KR
Xem chi tiết
H24
Xem chi tiết
MY
29 tháng 1 2022 lúc 10:42

\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)

\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)

\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)

\(2.\)  \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)

\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)

\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)

\(\Rightarrow m=\left\{1;2;3\right\}\)

 

 

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
AH
31 tháng 12 2018 lúc 17:37

Lời giải:

a) Khi $m=\sqrt{2}$ thì: \(y=f(x)=2x\)

\(f(1007)=2.1007=2014\)

b) Ta có:

\(f(-1)=m^2(-1)=-m^2\Rightarrow f(f(-1))=f(-m^2)=m^2(-m^2)=-m^4\)

\(f(2)=m^2.2=2m^2\) \(\Rightarrow f(f(2))=f(2m^2)=m^2.2m^2=2m^4\)

\(f(4)=m^2.4=4m^2\)

Để \(f(f(-1))+f(f(2))-f(4)=0\)

\(\Leftrightarrow -m^4+2m^4-4m^2=0\)

\(\Leftrightarrow m^4-4m^2=0\)

\(\Leftrightarrow m^2(m^2-4)=0\Rightarrow m^2-4=0\) (do $m\neq 0$)

\(\Rightarrow m^2=4\Rightarrow m=\pm 2\)

Bình luận (0)
TC
Xem chi tiết
HQ
9 tháng 7 2021 lúc 21:33

đi từ hướng làm để ra được bài toán: 

Ta thấy muốn f(|x|) có 5 điểm cực trị thì f'(x) phải có 2 điểm cực trị dương

giải f'(x)=0 \(\left\{{}\begin{matrix}x=1\\x^2-2\left(m+1\right)x+m^2-1=0\left(2\right)\end{matrix}\right.\) phương trình (2) phải có 2 nghiệm phân biệt trái dấu nhau 

Ta có: \(\Delta>0\Leftrightarrow m>-1\)

Theo yêu cầu bài toán: \(m^2-1>0\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\) 

Bình luận (0)
H24
Xem chi tiết
NL
15 tháng 4 2022 lúc 22:11

\(h\left(x\right)=f\left(x^2+1\right)-m\Rightarrow h'\left(x\right)=2x.f'\left(x^2+1\right)\)

\(h'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(x^2+1\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^2+1=2\\x^2+1=5\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;0;1;2\right\}\)

Hàm có nhiều cực trị nhất khi \(h\left(x\right)=m\) có nhiều nghiệm nhất

\(f\left(x\right)=\int f\left(x\right)dx=\dfrac{1}{4}x^4-\dfrac{5}{3}x^3-2x^2+20x+C\)

\(f\left(1\right)=0\Rightarrow C=-\dfrac{199}{12}\Rightarrow f\left(x\right)=-\dfrac{1}{4}x^4-\dfrac{5}{3}x^3-2x^2+20x-\dfrac{199}{12}\)

\(x=\pm2\Rightarrow x^2+1=5\Rightarrow f\left(5\right)\approx-18,6\)

\(x=\pm1\Rightarrow x^2+1=2\Rightarrow f\left(2\right)\approx6,1\)

\(x=0\Rightarrow x^2+1=1\Rightarrow f\left(1\right)=0\)

Từ đó ta phác thảo BBT của \(f\left(x^2+1\right)\) có dạng:

undefined

Từ đó ta dễ dàng thấy được pt \(f\left(x^2+1\right)=m\) có nhiều nghiệm nhất khi \(0< m< 6,1\)

\(\Rightarrow\) Có 6 giá trị nguyên của m

Bình luận (2)