Giải hê phương trình
x+y+z =11
2x-y+z=5
3x+2y+z=14
Giải hệ phương trình: \(\hept{\begin{cases}x+y+z=11\\2x-y+z=5\\3x+2y+z=14\end{cases}}\)
\(\hept{\begin{cases}x+y+z=11\left(1\right)\\2x-y+z=5\left(2\right)\\3x+2y+z=14\left(3\right)\end{cases}}\)
Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}2x+2y+2z=22\left(4\right)\\3x+3y+3z=33\left(5\right)\end{cases}}\)
Lấy (4) - (2) được \(3y+z=17\left(6\right)\)
Lấy (5) - (3) được \(y+2z=19\left(7\right)\)
Từ (6) và (7) có hệ \(\hept{\begin{cases}3y+z=17\\y+2z=19\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y+z=17\\3y+6z=57\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y+z=17\\5z=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=9\\z=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3\\z=8\end{cases}}\)
Thay vào (1) được x + 3 + 8 = 11
<=> x = 0
Vậy ..........
giải hệ phương trình
\(\hept{\begin{cases}x+y+z=11\\2x-y+z=5\\3x+2y+z=14\end{cases}}\)
lấy pt(1) + pt(2), ta có
\(3x+2z=16\)(4)
lấy 2.pt(2)+pt(3), ta có
\(7x+3z=24\)(5)
từ (4), (5), ta có hpt sau
\(\hept{\begin{cases}3x+2z=16\\7x+3z=24\end{cases}\Leftrightarrow}\hept{\begin{cases}9x+6z=48\\14x+6z=48\end{cases}}\)
từ 2 vế của 2 pt => x=0 và tính được z=8=>y=3
^_^
Giải hệ phương trình : \(\left\{{}\begin{matrix}x+y+z=11\\2x-y+z=5\\3x+2y+z=14\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+z=11\\2x-y+z=5\left(4\right)\\3x+2y+z=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+z=11\left(1\right)\\4x-2y+2z=10\left(2\right)\\3x+2y+z=14\left(3\right)\end{matrix}\right.\)
Lấy (4) cộng (1) vế với vế , ta có :
\(3x+2z=16\circledast\)
Lấy (2) cộng (3) vế với vế , ta có :
\(7x+3z=24\oplus\)
Từ \(\circledast;\oplus\) , ta có hpt : \(\left(I\right)\left\{{}\begin{matrix}3x+2z=16\\7x+3z=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+6z=48\\14x+6z=48\end{matrix}\right.\)( vô lý )
=> hpt (I) vô nghiệm
=> hpt đã cho vô nghiệm
giải hệ phương trình tìm ẩn x;y;z : 2x+y+z=4a
x+2y+z=4b
x+y+2z=4c
Giải hệ phương trình
\(\left\{{}\begin{matrix}-2x+y+z=a\\x-2y+z=b\\x+y-2z=c\end{matrix}\right.\) với x,y,z là các ẩn số
\(\Leftrightarrow\left\{{}\begin{matrix}3x-3y=b-a\\3x-3y=2b+c\\x+y-2z=c\end{matrix}\right.\) (nhân -1 vào 2 vế pt 1 và cộng pt 2, nhân 2 vào 2 vế pt 2 và cộng pt 3)
\(\Leftrightarrow\left\{{}\begin{matrix}0=a+b+c\\x-y=\dfrac{2b+c}{3}\\x+y-2z=c\end{matrix}\right.\)
- Nếu \(a+b+c\ne0\) hệ vô nghiệm
- Nếu \(a+b+c=0\) hệ có vô số nghiệm
Giải hệ phương trình
\(\left\{{}\begin{matrix}-2x+y+z=a\\x-2y+z=b\\x+y-2z=c\end{matrix}\right.\) với x,y,z là các ẩn số
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^5=x^4-2x^2y+2\\y^5=y^4-2y^2z+2\\z^5=z^4-2z^2x+2\end{matrix}\right.\)
giải hệ pt 3 ẩn \(\int^{x+y+z=11}_{\int^{2x-y+z=5}_{3x+2y+x=14}}\)
Phương trình 3 là 3x+2y+X=14 hả bn
giải phương trình
X+Y+Z=1
2X+2Y-2XY-Z2=1