Những câu hỏi liên quan
H24
Xem chi tiết
H24
18 tháng 11 2023 lúc 21:03

`a)lim_{x->+oo}[x+1]/[x^2+x+1]`

`=lim_{x->+oo}[1/x+1/[x^2]]/[1+1/x+1/[x^2]]`

`=0`

`b)lim_{x->+oo}[3x+1]/[3x^2-x+5]`

`=lim_{x->+oo}[3/x+1/[x^2]]/[3-1/x+5/[x^2]]`

`=0`

`c)lim_{x->-oo}[3x+5]/[\sqrt{x^2+x}]`

`=lim_{x->-oo}[3+5/x]/[-\sqrt{1+1/x}]`

`=-3`

`d)lim_{x->+oo}[-5x+1]/[\sqrt{3x^2+1}]`

`=lim_{x->+oo}[-5+1/x]/[\sqrt{3+1/[x^2]}]`

`=-5/3`

Bình luận (0)
DD
Xem chi tiết
HH
9 tháng 2 2021 lúc 20:32

1/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{2x}{x}-\sqrt{\dfrac{3x^2}{x^2}+\dfrac{2}{x^2}}}{\dfrac{5x}{x}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}}=\dfrac{2-\sqrt{3}}{5+1}=\dfrac{2-\sqrt{3}}{6}\)

2/ \(=\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{\dfrac{x^2}{x^4}+\dfrac{1}{x^4}}{\dfrac{2x^4}{x^4}+\dfrac{x^2}{x^4}-\dfrac{3}{x^4}}}=0\)

3/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt[3]{\dfrac{x^6}{x^6}+\dfrac{x^4}{x^6}+\dfrac{1}{x^6}}}{\sqrt{\dfrac{x^4}{x^4}+\dfrac{x^3}{x^4}+\dfrac{1}{x^4}}}=-1\)

Bình luận (0)
TL
Xem chi tiết
HH
9 tháng 2 2021 lúc 21:27

a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{x}{x}+\dfrac{3}{x}}{\dfrac{3x}{x}-\dfrac{1}{x}}=\dfrac{1}{3}\)

b/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{4}{x^2}}-\dfrac{x}{x}}{\dfrac{3x}{x}-\dfrac{1}{x}}=-\dfrac{2}{3}\)

Bình luận (0)
DD
Xem chi tiết
HH
9 tháng 2 2021 lúc 19:18

Da nan roi mang meo lam mat het bai -.-

1/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{\dfrac{3x^3}{x^3}+\dfrac{1}{x^3}}+\sqrt{\dfrac{2x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}{-\sqrt[4]{\dfrac{4x^4}{x^4}+\dfrac{2}{x^4}}}=\dfrac{-\sqrt[3]{3}-\sqrt{2}}{\sqrt[4]{4}}\)

2/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{8x^7}{\left(-2x^7\right)}=-\dfrac{8}{2^7}\)

3/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(4x^2-3x+4-4x^2\right)\left(\sqrt{x^2+x+1}+x\right)}{\left(x^2+x+1-x^2\right)\left(\sqrt{4x^2-3x+4}+2x\right)}=\dfrac{-3.2}{2}=-3\)

 

Bình luận (0)
TH
Xem chi tiết
NL
1 tháng 2 2019 lúc 14:21

1/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}.\sqrt[4]{1+8x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}-1}{x}\)

Liên hợp dài quá ko muốn gõ tiếp, bạn tự đặt nhân tử chung rồi liên hợp nhé, kết quả ra 5

2/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{1+7x}-2-\left(x^3-3x+2\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{7\left(x-1\right)}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)^2\left(x+2\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{7}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)\left(x+2\right)=\dfrac{7}{12}\)

3/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x^3-x^2+1}{2x^2+3x-1}=\lim\limits_{x\rightarrow-\infty}\dfrac{x-1+\dfrac{1}{x^2}}{2+\dfrac{3}{x}-\dfrac{1}{x^2}}=-\infty\)

4/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{4x+1}}=\lim\limits_{x\rightarrow+\infty}\dfrac{1+\dfrac{1}{\sqrt[6]{x}}+\dfrac{1}{\sqrt[4]{x}}}{\sqrt{4+\dfrac{1}{x}}}=\dfrac{1}{\sqrt{4}}=\dfrac{1}{2}\)

5/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt[3]{8x^3+x^2+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{1+\dfrac{2}{x^2}}}{\sqrt[3]{8+\dfrac{1}{x}+\dfrac{1}{x^3}}}=\dfrac{1-1}{\sqrt[3]{8}}=0\)

6/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+3x-7}}{\sqrt[3]{27x^3+5x^2+x-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{4+\dfrac{3}{x}-\dfrac{7}{x^2}}}{\sqrt[3]{27+\dfrac{5}{x}+\dfrac{1}{x^2}-\dfrac{4}{x^3}}}=\dfrac{-\sqrt{4}}{\sqrt[3]{27}}=\dfrac{-2}{3}\)

Bình luận (0)
SK
Xem chi tiết
HA
Xem chi tiết
NT
4 tháng 12 2023 lúc 22:58

a: \(\lim\limits_{x\rightarrow+\infty}\left[x\left(\sqrt{x^2+2}-x\right)\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\left[x\cdot\dfrac{x^2+2-x^2}{\sqrt{x^2+2}+x}\right]\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2x}{\sqrt{x^2+2}+x}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2}{\sqrt{1+\dfrac{2}{x^2}}+1}=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)

b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x^2-4x+6}{x-2}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2\left(3-\dfrac{4}{x}+\dfrac{6}{x^2}\right)}{x\left(1-\dfrac{2}{x}\right)}\)

\(=\lim\limits_{x\rightarrow-\infty}\left[x\cdot\dfrac{3-\dfrac{4}{x}+\dfrac{6}{x^2}}{1-\dfrac{2}{x}}\right]\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}x=-\infty\\\lim\limits_{x\rightarrow-\infty}\dfrac{3-\dfrac{4}{x}+\dfrac{6}{x^2}}{1-\dfrac{2}{x}}=\dfrac{3-0+0}{1-0}=\dfrac{3}{1}=3>0\end{matrix}\right.\)

Bình luận (0)
SK
Xem chi tiết
DN
4 tháng 4 2017 lúc 13:07

Ôn tập chương IVÔn tập chương IV

Bình luận (0)
DD
Xem chi tiết
HH
9 tháng 2 2021 lúc 20:25

Hic nan qua :( Lam vay

P/s: Anh Lam check all ho em nhung bai em lam nhe :( Em cam on

1/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-x+1-x^2}{\sqrt{x^2-x+1}+x}=\dfrac{-1}{1+1}=-\dfrac{1}{2}\)

2/ \(=\lim\limits_{x\rightarrow-\infty}x\left(\dfrac{4x^2+1-x^2}{\sqrt{4x^2+1}+x}\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{x}{x}}{-\sqrt{\dfrac{4x^2}{x^2}+\dfrac{1}{x^2}}+\dfrac{x}{x}}=\dfrac{1}{-2+1}=-1\)

3/ \(=\lim\limits_{x\rightarrow-\infty}x^5\left(4-\dfrac{3}{x^2}+\dfrac{1}{x^4}+\dfrac{1}{x^5}\right)=-\infty\)

4/ \(=\lim\limits_{x\rightarrow+\infty}\sqrt{x^4}\left(\sqrt{1-\dfrac{x^3}{x^4}+\dfrac{x^2}{x^4}-\dfrac{x}{x^4}}\right)=+\infty\)

 

Bình luận (0)