Cho \(3\le a,b,c\le5\). C/m \(\sqrt{ab+1}+\sqrt{bc+1}+\sqrt{ca+1}>a+b+c\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho \(3\le a,b,c\le5\).Chứng minh rằng ;\(\sqrt{ab+1}+\sqrt{bc+1}+\sqrt{ca+1}>a+b+c\)
làm được tick k nuối tiếc
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho \(a,b,c\text{ }\ge0\) thỏa \(a+b+c=3\).Chứng minh:
\(3\le a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)
Ta có:
\(b\ge0\Rightarrow b^3+1\ge1\Rightarrow a\sqrt{b^3+1}\ge a\)
Hoàn toàn tương tự: \(b\sqrt{c^3+1}\ge b\) ;\(c\sqrt{a^3+1}\ge c\)
Cộng vế:
\(P\ge a+b+c=3\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và hoán vị
Lại có:
\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\dfrac{a\left(b^2+2\right)}{2}\)
Tương tự: \(b\sqrt{c^3+1}\le\dfrac{b\left(c^2+2\right)}{2}\) ; \(c\sqrt{a^3+1}\le\dfrac{c\left(a^2+2\right)}{2}\)
\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+a+b+c=\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)
\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2+2abc\right)+3\)
Nên ta chỉ cần chứng minh: \(Q=ab^2+bc^2+ca^2+2abc\le4\)
Không mất tính tổng quát, giả sử \(a=mid\left\{a;b;c\right\}\)
\(\Rightarrow\left(a-b\right)\left(a-c\right)\le0\Leftrightarrow a^2+bc\le ab+ac\)
\(\Rightarrow ca^2+bc^2\le abc+ac^2\)
\(\Rightarrow Q\le ab^2+ac^2+2abc=a\left(b+c\right)^2=\dfrac{1}{2}.2a\left(b+c\right)\left(b+c\right)\le\dfrac{1}{54}\left(2a+2b+2c\right)^3=4\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;2;0\right)\) và 1 số hoán vị của chúng
cho a,b,c>0 thỏa mãn ab+bc+ca=3abc
chứng minh rằng \(\dfrac{1}{\sqrt{a^3+b}}+\dfrac{1}{\sqrt{b^3+c}}+\dfrac{1}{\sqrt{c^3+a}}\le\dfrac{3}{\sqrt{2}}\)
Cho a + b + c = 1 và a,b,c là các số thực dương. CMR: \(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)
Tương tự: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) ; \(\sqrt{\frac{ca}{b+ca}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{a+b}\right)\)
Cộng vế với vế: \(VT\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{c}{a+c}\right)=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Cho a,b,c>0 thỏa mãn abc=1. Chứng minh rằng
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\)
cho a,b,c>0 thỏa mãn ab+bc+ca=3abc
chứng minh rằng \(\dfrac{1}{\sqrt{a^3+b}}+\dfrac{1}{\sqrt{b^3+c}}+\dfrac{1}{\sqrt{c^3+a}}\le\dfrac{3}{2}\)
nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)
Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
cho a,b,c >0
cmr \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
cmr \(\frac{\sqrt{ab}}{c+2\sqrt{ab}}+\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ca}}{b+2\sqrt{ca}}\le1\)
a) Ta có BĐT:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)
Khi \(a=b=c\)
câu 1 . Theo bđt côsi ta có \(a^3+b^3\ge ab(a+b)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab(a+b)+abc}=\frac{1}{ab(a+b+c)}=\frac{c}{abc(a+b+c)}\)
tương tự \(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc(a+b+c)}\)và\(\frac{1}{a^3+c^3+abc}\le\frac{b}{abc(a+b+c)}\)
Cộng vế theo vế ta có \(\frac{1}{b^3+c^3+abc}+\frac{1}{b^3+a^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{a+b+c}{abc(a+b+c)}=\frac{1}{abc}\)
\(\RightarrowĐPCM\)