Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho a,b,c>0 thỏa mãn abc=1. Chứng minh rằng
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\)
Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
Cho a, b, c là các số dương thỏa mãn a+b+c+2=abc. Chứng minh: \(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\le\frac{3}{2}\)
Giúp mình câu BĐT Cauchy này với Cho a,b,c >0 và a+b+c=1 CMR \(\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}+\frac{ab}{\sqrt{c+ab}}\le\frac{1}{2}\)
Cho \(a;b;c\) là các số dương thỏa mãn: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=4\). Chứng minh rằng:
\(\frac{1}{2\sqrt{bc}+\sqrt{ca}+\sqrt{ab}}+\frac{1}{\sqrt{bc}+2\sqrt{ac}+\sqrt{ab}}+\frac{1}{\sqrt{bc}+\sqrt{ac}+2\sqrt{ab}}\le\frac{1}{\sqrt{abc}}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện a+b+c=1.
CMR: P= \(\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)≤ \(\dfrac{3}{2}\)
Cho a,b,c >0 thỏa mãn abc=1. Chứng minh:
\(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
Cho a,b,c>0 Chứng minh \(\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}+\frac{\sqrt{ab}}{c+3\sqrt{ab}}\le\frac{3}{4}\)