Cho ΔABC vuông ở A, đường cao AH. Từ điểm D nằm giữa H và C, vẽ DE ⊥ DC (E ∈ AC); DK ⊥ AC (K ∈ AC). Chứng minh BE // HK
cho mình xin cách giải chi tiết nhất để mình hiểu
Cho tam giác vuông ở A, đường cao AH. Từ điểm D nằm giữa H và C, vẽ DE vuông góc DC (E thuộc AC); DK vuông gócAC (K thuộc AC) . Chứng minh BE // HK
ΔDEC vuông tại D có DK là đường cao
nên CK/KE=CD^2/DE^2
CH/HB=CA^2/AB^2
Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=DE/AB
=>CD/DE=CA/AB
=>CH/HB=CK/KE
=>HK//EB
Bài 9: Cho tam giác ABC vuông tại A, đường cao AH. Từ điểm D nằm giữa H và C, vẽ DE vuông góc BC ( E thuộc AC), DK vuông góc với AC ( K thuộc AC). Chứng minh BE // HK.
Cho ΔABC vuông tại A có AB < AC. Vẽ đường cao AH của ΔABC. Gọi D là điểm đối xứng của B qua H. Hạ DE vuông góc với AC tại E. a) Chứng minh ΔCED đồng dạng ΔCHA.
b) Chứng minh \(AH^2\)= HD.HC
c) Đường trung tuyến CK của ΔABC cắt AH, AD và DE lần lượt tại M, F và I. Chứng minh AD.AK – AF.DI = AF.AK.
d) Gọi L là giao điểm của BM và AC. Chứng minh SALB = SAHB
Cho tam giác ABC vuông tại A có đường cao AH, D nằm giữa H và C. Từ D kẻ DE vuông góc với BC (E thuộc AC), DK vuông góc AC(C thuộc AC). Chứng minh BE song song HK
Cho tam giác ABC vuông tại A có đường cao AH, D nằm giữa H và C. Từ D kẻ DE vuông góc với BC (E thuộc AC), DK vuông góc AC(C thuộc AC). Chứng minh BE song song HK
cho tam giác ABC vuông tại A, đường cao AH, điểm D nằm giữa H và C. Kẻ DE vuông góc với BC ( E thuộc AC), kẻ DK vuông góc với AC ( K thuộc AC). Chứng minh BE // HK
Ví dụ
Tam giác BAE có: BE = AB (gt) => Tam giác BAE cân tại B => ^BAE = ^BEA (1)
Ta có: BA _I_ AC ( Tam giác ABC vuông tại A )
EK _I_ AC (gt)
Nên: BA // EK => ^BAE = ^AEK (2)
Từ (1)(2) => ^BEA = ^AEK
Tam giác AHE và tam giác AKE có:
^H = ^K = 90độ
^BEA = ^AEK (cmt)
AE là cạnh huyền chung
Nên: Tam giác AHE = tam giác AKE( ch-gn) => AH = AK
Cho ΔABC vuông tại A, đường cao AH.Trên tia BC lấy điểm D sao cho BD = BA. Đường vuông góc với BC tại D cắt AC tại điểm E. Chứng minh rằng:
a) Điểm H nằm giữa B và D
b) BE là đường trung trực của đoạn AD
c) Tia AD là tia phân giác của góc HAC
d) HD < DC
a. Ta có tam giác AHB vuông tại H
=> AB là cạnh huyền
mà AB = BD
=> BD > BH
=> H nằm giữa B và D
b, c,d tớ ko biết vì chưa đủ tầm
cho tam giác ABC, góc A=90 đường cao AH gọi D là điểm nằm giữa B và C, D không trùng với H
vẽ DE vuông góc với AB tại E
DF vuông góc với AC tại F
CM góc EHF=90
Cho tam giác ABC vuông tại A, AC>AB, đường cao AH. Lấy điểm K nằm giữa H và C sao cho HK = AH. Từ A kẻ đường thẳng Ax // BC, từ K kẻ đường thẳng Ky // AH. Gọi E là giao điểm của Ax và Ky. Gọi P là giao điểm của AC và KE.( VẼ HÌNH GIÚP MÌNH NHA )
a. Tứ giác AHKE là hình gì? Vì sao?
b. Chứng minh tam giác ABP vuông cân
c. Vẽ hình bình hành APQB. Gọi I là giao điểm của BP và AQ. Chứng minh tam giác AIK cân.
d. Chứng minh H, I, E thẳng hàng.