Những câu hỏi liên quan
LN
Xem chi tiết
NT
11 tháng 8 2021 lúc 19:49

1: Ta có: \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)

\(\Leftrightarrow5x+20+12x-28=7x+2\)

\(\Leftrightarrow17x-7x=2+8=10\)

hay x=1

2: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)

\(\Leftrightarrow\dfrac{6x}{36}+\dfrac{4\left(1-3x\right)}{36}=\dfrac{3\left(-x+1\right)}{36}\)

\(\Leftrightarrow6x+4-12x=-3x+3\)

\(\Leftrightarrow-6x+3x=3-4\)

hay \(x=\dfrac{1}{3}\)

3: Ta có: \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)

\(\Leftrightarrow4x-12-x-2=6x-3\)

\(\Leftrightarrow3x-14-6x+3=0\)

\(\Leftrightarrow-3x=11\)

hay \(x=-\dfrac{11}{3}\)

Bình luận (0)
NT
11 tháng 8 2021 lúc 19:55

4: Ta có: \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)

\(\Leftrightarrow3x-6-8x-12=x+6\)

\(\Leftrightarrow-5x-x=6+18\)

hay x=-4

5: Ta có: \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)

\(\Leftrightarrow6x-3+2x-6=-1\)

\(\Leftrightarrow8x=8\)

hay x=1

Bình luận (0)
KH
Xem chi tiết
NT
5 tháng 3 2021 lúc 21:44

a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)

\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)

\(\Leftrightarrow x+8-12+20x=0\)

\(\Leftrightarrow21x-4=0\)

\(\Leftrightarrow21x=4\)

\(\Leftrightarrow x=\dfrac{4}{21}\)

Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)

Bình luận (0)
AH
5 tháng 3 2021 lúc 22:00

Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!

Bình luận (2)
AH
5 tháng 3 2021 lúc 23:03

a) 

PT \(\Leftrightarrow \frac{4x+2}{12}-\frac{3x-6}{12}=\frac{12-8x}{12}-\frac{12x}{12}\)

\(\Leftrightarrow 4x+2-3x+6=12-8x-12x\)

\(\Leftrightarrow 21x=4\Leftrightarrow x=\frac{4}{21}\)

b) 

PT \(\Leftrightarrow \frac{30x+15}{20}-\frac{100}{20}-\frac{6x+4}{20}=\frac{24x-12}{20}\)

\(\Leftrightarrow 30x+15-100-6x-4=24x-12\Leftrightarrow -89=-12\) (vô lý)

Vậy pt vô nghiệm.

Bình luận (4)
LN
Xem chi tiết
NM
11 tháng 8 2021 lúc 16:43

\(1,\dfrac{4x-4}{3}=\dfrac{7-x}{5}\\ \Leftrightarrow5\left(4x-4\right)=3\left(7-x\right)\\ \Leftrightarrow20x-20=21-3x\\ \Leftrightarrow17x=41\Leftrightarrow x=\dfrac{41}{17}\)

\(2,\dfrac{3x-9}{5}=\dfrac{3-x}{2}\\ \Leftrightarrow6x-18=15-5x\\ \Leftrightarrow11x=33\\ \Leftrightarrow x=3\)

\(3,\dfrac{2x-1}{5}-\dfrac{3-x}{3}=1\\ \Leftrightarrow\dfrac{6x-3-15+5x}{15}=1\\ \Leftrightarrow11x-18=1\\ \Leftrightarrow x=\dfrac{19}{11}\)

\(4,\dfrac{x-5}{3}+\dfrac{3x+4}{2}=\dfrac{5x+2}{6}\\ \Leftrightarrow2x-10+9x+12=5x+2\\ \Leftrightarrow6x=0\Leftrightarrow x=0\)

\(5,\dfrac{x-3}{2}+\dfrac{2x+3}{5}=\dfrac{2x+5}{10}\\ \Leftrightarrow5x-15+4x+6=2x+5\\ \Leftrightarrow7x=14\\ \Leftrightarrow x=2\)

Tick nha

Bình luận (0)
NT
11 tháng 8 2021 lúc 23:15

2: Ta có: \(\dfrac{3x-9}{5}=\dfrac{3-x}{2}\)

\(\Leftrightarrow6x-18=15-5x\)

\(\Leftrightarrow11x=33\)

hay x=3

Bình luận (0)
MS
Xem chi tiết
NT
8 tháng 2 2021 lúc 21:50

1) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3x^2-2x+1\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8-3x^2+2x-1=0\)

\(\Leftrightarrow-23x-7=0\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=-\dfrac{7}{23}\)(nhận)

Vậy: \(S=\left\{-\dfrac{7}{23}\right\}\)

2) ĐKXĐ: \(x\notin\left\{\dfrac{2}{3};-\dfrac{2}{3}\right\}\)

Ta có: \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)

\(\Leftrightarrow\dfrac{3x+2}{3x-2}+\dfrac{6}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\dfrac{3x+8}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\dfrac{\left(3x+8\right)\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

Suy ra: \(9x^2+6x+24x+16=9x^2\)

\(\Leftrightarrow30x+16=0\)

\(\Leftrightarrow30x=-16\)

hay \(x=-\dfrac{8}{15}\)(nhận)

Vậy: \(S=\left\{-\dfrac{8}{15}\right\}\)

 

Bình luận (0)
KD
Xem chi tiết
NT
26 tháng 10 2023 lúc 21:46

6:

a: ĐKXĐ: x<>0

\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)

\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)

b: ĐKXĐ: x<>1

\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)

\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)

c: ĐKXĐ: x<>-2

\(\dfrac{x^2+4x+4}{2x+4}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)

\(=\dfrac{x+2}{2}\)

d: ĐKXĐ: x<>-2

\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)

\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)

e: ĐKXĐ: x<>-y

\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)

g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)

\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)

7:

a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)

\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)

b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)

\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)

c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)

d:

\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)

\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)

Bình luận (0)
AA
Xem chi tiết
HP
15 tháng 3 2021 lúc 17:09

1.

\(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x-7\le x^2+1\\-4x^2-4\le x^2-2x-7\end{matrix}\right.\) (Do \(x^2+1>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\-4\le x\le-\dfrac{3}{5}\end{matrix}\right.\)

Bình luận (0)
HP
15 tháng 3 2021 lúc 17:16

2.

\(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+7\le13x^2-26x-26\\x^2-2x-2\le x^2-5x+7\end{matrix}\right.\) (Do \(x^2-5x+7>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{11}{4}\\x\le-1\end{matrix}\right.\\x\le3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{4}\le x\le3\\x\le-1\end{matrix}\right.\)

Bình luận (0)
HA
Xem chi tiết
MH
31 tháng 1 2021 lúc 10:14

1/ \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\) (1)

Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\3x+4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)

(1) \(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\\\Leftrightarrow12x^2+16x+21x+28=12x^2-12x+5x-5\\ \Leftrightarrow\left(16+21+12-5\right)x=-5-28\\ \Leftrightarrow44x=-33\\ \Leftrightarrow x=-\dfrac{3}{4}\) (Thỏa mãn)

Vậy \(x=-\dfrac{3}{4}\).

2/ \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\) (2)

Điều kiện: \(x\ne\pm1\)

(2)\(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+1\right)-2x}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow x\left(x+1\right)-2x=0\\ \Leftrightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

So sánh với điều kiện \(\Rightarrow x=0\) là nghiệm của PT.

3/ \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\) (3)

Điều kiện: \(x\ne\pm3\)

(3)\(\Leftrightarrow\dfrac{1}{3-x}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\\ \Leftrightarrow-\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ \Leftrightarrow-\left(x+3\right)-14=\left(x-3\right)\left(x+3\right)\\ \Leftrightarrow-x-17=x^2-9\Leftrightarrow x^2+x+8=0\) (Vô nghiệm do \(x^2+x+8>0\qquad\forall x\)).

Vậy PT vô nghiệm.

4/ \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\) (4)

Điều kiện: \(x\ne\pm1\)

(4)\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)=4\Leftrightarrow4x=4\Leftrightarrow x=1\) (loại)

Vậy PT vô nghiệm.

5/ \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\) (5)

Điều kiện: \(x\ne0\)

(5)\(\Leftrightarrow x+\dfrac{1}{x}=\left(x+\dfrac{1}{x}\right)^2-2\)

Đặt \(t=x+\dfrac{1}{x}\), ta có: \(t=t^2-2\\ \Leftrightarrow t^2-t-2=0\Leftrightarrow\left(t-2\right)\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-1\end{matrix}\right.\)

Với \(t=2\) ta có: \(x+\dfrac{1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\) (thỏa mãn)

Với \(t=-1\) ta có: \(x+\dfrac{1}{x}=-1\Leftrightarrow x^2+1=-x\Leftrightarrow x^2+x+1=0\) (vô nghiệm).

Vậy \(x=1\) là nghiệm PT.

6/ \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\) (6)

Điều kiện: \(x\ne-1\)

(6)\(\Leftrightarrow\dfrac{x-1}{x^2+4}-\dfrac{x-1}{x+1}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\end{matrix}\right.\)

\(x-1=0\Leftrightarrow x=1\) (Thỏa mãn)

\(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\Leftrightarrow\dfrac{1}{x^2+4}=\dfrac{1}{x+1}\Leftrightarrow x^2+4=x+1\\ \Leftrightarrow x^2-x+3=0\) (vô nghiệm).

Vậy \(x=1\) là nghiệm PT.

 

Bình luận (0)
NT
31 tháng 1 2021 lúc 10:49

1) ĐKXĐ: \(x\notin\left\{1;-\dfrac{4}{3}\right\}\)

Ta có: \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)

\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)

\(\Leftrightarrow12x^2+16x+21x+28=12x^2+12x+5x-5\)

\(\Leftrightarrow12x^2+37x+28-12x^2-17x+5=0\)

\(\Leftrightarrow20x+33=0\)

\(\Leftrightarrow20x=-33\)

\(\Leftrightarrow x=-\dfrac{33}{20}\)(nhận)

Vậy: \(S=\left\{-\dfrac{33}{20}\right\}\)

2) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

Suy ra: \(x^2+x-2x=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)

Vậy: S={0}

3) ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

Ta có: \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\)

\(\Leftrightarrow\dfrac{-1}{x-3}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\)

\(\Leftrightarrow\dfrac{-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(-x-3-14=x^2-9\)

\(\Leftrightarrow x^2-9=-x-17\)

\(\Leftrightarrow x^2-9+x+17=0\)

\(\Leftrightarrow x^2+x+8=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{31}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{31}{4}=0\)(vô lý)

Vậy: \(S=\varnothing\)

4) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)

\(\Leftrightarrow4x=4\)

hay x=1(loại)

Vậy: \(S=\varnothing\)

5) ĐKXĐ: \(x\ne0\)

Ta có: \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\)

\(\Leftrightarrow\dfrac{x^2+1}{x}=\dfrac{x^4+1}{x^2}\)

\(\Leftrightarrow x^2\left(x^2+1\right)=x\left(x^4+1\right)\)

\(\Leftrightarrow x^4+x^2=x^5+x\)

\(\Leftrightarrow x^5+x-x^4-x^2=0\)

\(\Leftrightarrow x\left(x^4-x^3-x+1\right)=0\)

\(\Leftrightarrow x\left[x^3\left(x-1\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)^2\cdot\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\)

nên \(x\cdot\left(x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x-1=0\end{matrix}\right.\Leftrightarrow x=1\)

Vậy: S={1}

6) ĐKXĐ: \(x\in R\)

Ta có: \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^2+4\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(x-1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1-x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-x^2+x-3\right)=0\)

\(\Leftrightarrow-\left(x-1\right)\left(x^2-x+3\right)=0\)

mà \(x^2-x+3>0\)

nên x-1=0

hay x=1(nhận)

Vậy: S={1}

Bình luận (0)
MN
Xem chi tiết
NT
11 tháng 7 2023 lúc 22:00

1: Sửa đề: 2/x+2

\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)

=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

=>4x-3=-3x-6

=>7x=-3

=>x=-3/7(nhận)

2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)

=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)

=>-6x^2+6=2(3x^2-10x+3)

=>-6x^2+6=6x^2-20x+6

=>-12x^2+20x=0

=>-4x(3x-5)=0

=>x=5/3(nhận) hoặc x=0(nhận)

3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)

=>x*19/6=35/12

=>x=35/38

Bình luận (0)
MS
Xem chi tiết
MS
8 tháng 2 2021 lúc 15:47

giúp mình với ạ câu nào cũng được

Bình luận (0)