b.x^2 +6x - 3 (x+6)
c. 2x^3y-8x^2y+8xy
d.y^2-x^2-12y+36
Tìm nghiệm nguyên dương của các pt
a.x2+5y2+1=2y(2x-1)
b.x2+2y2+2xy+2x-2y+5=0
c.2x2+2y2+z2-6x+9=2y(x+z)
d.x2+3y2+4z2+2xy-4yz-12y+36=0
1 Thực hiện phép tính
a.(a-b)(a+b)
b.(8^3y^3-12y^3-12x^3y^5):2x^3y^2
c.(x^3+1):(x^2-x+1)
2.phân tích đa thức thành nhân tử
a.6x^2y-18xy^2
b.x^3+x^2-4x-4
Bài 1:
a) \((a-b)(a+b)=a^2-b^2\) (theo hằng đẳng thức đáng nhớ)
b) \((8x^3y^3-12y^3-12x^3y^5):(2x^3y^2)=\frac{8x^3y^3}{2x^3y^2}-\frac{12y^3}{2x^3y^2}-\frac{12x^3y^5}{2x^3y^2}\)
\(=4y-\frac{6y}{x^3}-6y^3=4y-6x^{-3}y-6y^3\)
c)
\((x^3+1):(x^2-x+1)=\frac{x^3+1}{x^2-x+1}=\frac{(x+1)(x^2-x+1)}{x^2-x+1}=x+1\)
Bài 2:
a)
\(6x^2y-18xy^2=6xy(x-3y)\)
b)
\(x^3+x^2-4x-4=(x^3+x^2)-(4x+4)=x^2(x+1)-4(x+1)\)
\(=(x+1)(x^2-4)=(x+1)(x^2-2^2)=(x+1)(x-2)(x+2)\)
a,\(\dfrac{x+1}{x-3}+\dfrac{-2x^2+2x}{x^2-9}+\dfrac{x-1}{x+3}\)
b,\(\dfrac{1-2x}{6x^3y}+\dfrac{3+2y}{6x^3y}+\dfrac{2x-4}{6x^3y}\)
c,\(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{3y^3}\)
d,\(\dfrac{5}{4\left(x+2\right)}+\dfrac{8-x}{4x^2+8x}\)
c,\(\dfrac{x^2+2}{x^3+1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
BT11: Tìm hiệu A-B biết
\(a,-x^2y+A+2xy^2-B=3x^2y-4xy^2\)
\(b,5xy^2-A-6yx^2+B=-7xy^2+8x^2y\)
\(c,3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y\)
\(d,-6x^2y^3+A-3x^3y^2-B=2x^2y^3-7x^3y\)
\(e,A-\dfrac{3}{8}xy^2-B+\dfrac{5}{6}x^2y=\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\)
\(f,5xy^3-A-\dfrac{5}{8}yx^3+B=\dfrac{21}{4}xy^3-\dfrac{7}{6}x^3y\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
phân tích đa thức sau thành nhân tử
a\(12x^3y-24x^2y^2+12xy^3\)
b\(x^2-6x+xy-6y\)
c\(2x^2+2xy-x-y\)
d\(ax-2x-a^2+2a\)
e\(x^3-3x^2+3x-1\)
f\(3x^2-3y^2-12x-12y\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Phân tích đa thức sau thành nhân tử
a.3x mũ2 -12xy
b.x mũ 2+7x-2(x+7)
c.8x mũ 3 -8x mũ 2+2x
d.x mũ 2 -y mũ 2+12y-36
Giúp e vs
\(a.3x^2-12xy=3x\left(x-4y\right)\)
\(b.x^2+7x-2\left(x+7\right)=x\left(x+7\right)-2\left(x+7\right)=\left(x-2\right)\left(x+7\right)\)
\(c.8x^3-8x^2+2x=2x\left(4x^2-4+1\right)=2x\left(2x-1\right)^2\)
\(d.x^2-y^2+12y-36=x^2-\left(y-6\right)^2=\left(x-y-6\right)\left(x-y+6\right)\)
Bài làm
a) 3x2 - 12xy
= 3x( x - 4y )
b) x2 + 7x - 2( x + 7 )
= x( x + 7 ) - 2( x + 7 )
= ( x + 7 )( x - 2 )
c) 8x3 - 8x2 + 2x
= 2x( 4x2 - 4x + 1 )
= 2x( 2x - 1 )2
d) x2 - y2 + 12y - 36
= x2 - ( y2 - 12y + 36 )
= x2 - ( y2 - 2.y.6 + 62 )
= x2 - ( y - 6 )2
= ( x - y + 6 )( x + y - 6 )
# Học tốt #
Thực hiện phép tính:
(2x + 3) (x - 5) + 2x(3 - x) + x - 10
(6x^3y^2 - 8x^2y^3 + 4x^3y^3) : 2x^2y^2
\(\left(2x+3\right)\left(x-5\right)+2x\left(3-x\right)+x-10\)
\(=\left(2x^2+3x-10x-15\right)+\left(6x-2x^2\right)+x-10\)
\(=-25\)
a,\(\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy+6x+6\end{cases}}\)
b,\(\hept{\begin{cases}x^3+2xy^3+12y=0\\8y^2+x^2+12\end{cases}}\)
a,(3+1)(x-1)
b,5x(3x-2)
c,3x^2y+6xy^2-9xy):3xy
d,(3x^4-6x^3+4x^2):2x^y
e,(8x^4y^3-4x^3y^2+x^2y^2):2x^2y^2