Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a)Cho 3 số dương: a,b,c có tổng =1. CMR: 1/a + 1/b + 1/c >= 9
b) Cho a,b dương và a2018 + b2018= a2019 + b2019 = a2020+b2020. TÍnh a2021 + b2021
b) \(\left(a^{2019}+b^{2019}\right)^2=\left(a^{2018}+b^{2018}\right)\left(a^{2020}+b^{2020}\right)\Leftrightarrow2a^{2019}b^{2019}=a^{2018}a^{2020}+a^{2020}b^{2018}\Leftrightarrow2ab=a^2+b^2\Leftrightarrow a=b\).
Do a, b dương nên a = b = 1.
Câu a thì bạn áp dụng BĐT Svacxo
Cho \(f\left(x\right)=x^3+ax^2+bx+c\) (a, b thuộc R). Biết f(x) chia cho x+1 dư -4, chia cho x-2 dư 5. Tính: \(A=\left(a^{2019}+b^{2019}\right).\left(b^{2020}-c^{2020}\right).\left(c^{2021}+a^{2021}\right)\)
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)
\(\frac{a}{2019}\)Cho 3 số a,b,c thỏa mãn a/2019 = b/2020 = c/2021. Tính giá trị biểu thức: M=4*(a-b)*(b-c)-(c-a)^2
gọi a/2019=b/2020=c/2021 là x
\(\Rightarrow\)a=2019*x ;b=2020*x;c=2021*x
\(\Rightarrow\)M=4*(2019*x-2020*x)*(2020-2021)-(2021*x-2019*x)^2
\(\Rightarrow\)M=4*(-x)*(-x)-(2x)^2
\(\Rightarrow\)M=4*x^2-4*x^2
⇒M=0
cho đa thức F(x)=x3+ax2+bx+c (a,b,c\(\inℝ\)), biết F(x) chia x-1 dư -4 , F(x) chia x+2 dư 5.
tính A=(a2019+b2019)(b2020-c2020)(a2021+c2021)
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
cho đa thức F(x)=x3+ax2+bx+c (a,b,c\(\inℝ\)), biết F(x) chia x-1 dư -4 , F(x) chia x+2 dư 5.
tính A=(a2019+b2019)(b2020-c2020)(a2021+c2021)
1. So sánh
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\) và B= \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{13}{60}\)
b) \(C=\dfrac{2019}{2021}+\dfrac{2021}{2022}\) và \(D=\dfrac{2020+2022}{2019+2021}.\dfrac{3}{2}\)
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
Cho a, b, c thoả mãn:
a/2018 = b/2019 = c/2020
CMR 4(a - b)(b - c) = (a - c)2
Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)=> \(\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)
Khi đó, ta có: 4(2018k - 2019k)(2019k - 2020k) = 4(-k)(-k) = 4(-k)2 = 4k2 (1)
(2018k - 2020k)2 = (-2k)2 = 4k2 (2)
Từ (1) và (2) => 4(a - b)(b - c) = (a - c)2
Cho 3 số a , b , c thỏa mãn :
\(\frac{a}{2019}=\frac{a}{2020}=\frac{c}{2021}\)
Tính : M = 4( a - b ) . ( b - c ) - ( c - a )
Ta có :
Đặt \(\frac{a}{2019}\)= \(\frac{b}{2020}\)= \(\frac{c}{2021}\)= k
=> a = 2019k; b = 2020k; c = 2021k
M = 4(a-b).(b-c) - (c-a)
M = 4(2019k- 2020k). (2020k-2021k) - (2021k - 2019k)
M = 4.(-1)k.(-1)k - 2k
M = 4k2 - 2k
(Hình như mình thấy đề bạn có gì sai sai)
@Minh Vo Nhat : Đề không sai , chẳng qua bạn sai :>>
Đặt \(\frac{a}{2019}=\frac{b}{2020}=\frac{c}{2021}\)= k
\(\Rightarrow\hept{\begin{cases}a=2019k\\b=2020k\\c=2021k\end{cases}}\)=> M = 4 . ( 2019k - 2020k ) . ( 2020k - 2021k ) - ( 2021k - 2019k )2
=> M = 4 . ( -k ) . ( -k ) - ( 2k )2 = 4k2 - 4k2 = 0
So sánh
A. √2021 - √2020 và √2020 - √2019
B. √2019×2021 và 2020
C. √2019 + √2021 và 2√2020
a) Ta có: \(\sqrt{2021}-\sqrt{2020}\)
\(=\frac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)
\(=\frac{1}{\sqrt{2020}+\sqrt{2021}}\)
Ta có: \(\sqrt{2020}-\sqrt{2019}\)
\(=\frac{\left(\sqrt{2020}-\sqrt{2019}\right)\left(\sqrt{2020}+\sqrt{2019}\right)}{\sqrt{2020}+\sqrt{2019}}\)
\(=\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
Ta có: \(\sqrt{2020}+\sqrt{2021}>\sqrt{2019}+\sqrt{2020}\)
\(\Leftrightarrow\frac{1}{\sqrt{2020}+\sqrt{2021}}< \frac{1}{\sqrt{2019}+\sqrt{2020}}\)
hay \(\sqrt{2021}-\sqrt{2020}< \sqrt{2020}-\sqrt{2019}\)
b) Ta có: \(\sqrt{2019\cdot2021}\)
\(=\sqrt{\left(2020-1\right)\left(2020+1\right)}\)
\(=\sqrt{2020^2-1}\)
Ta có: \(2020=\sqrt{2020^2}\)
Ta có: \(2020^2-1< 2020^2\)
nên \(\sqrt{2020^2-1}< \sqrt{2020^2}\)
\(\Leftrightarrow\sqrt{2019\cdot2021}< 2020\)
c) Ta có: \(\left(\sqrt{2019}+\sqrt{2021}\right)^2\)
\(=2019+2021+2\cdot\sqrt{2019\cdot2021}\)
\(=4040+2\sqrt{2019\cdot2021}\)
\(=4040+2\cdot\sqrt{2020^2-1}\)
Ta có: \(\left(2\sqrt{2020}\right)^2\)
\(=4\cdot2020\)
\(=4040+2\cdot2020\)
\(=4040+2\cdot\sqrt{2020^2}\)
Ta có: \(2020^2-1< 2020^2\)
\(\Leftrightarrow\sqrt{2020^2-1}< \sqrt{2020^2}\)
\(\Leftrightarrow2\cdot\sqrt{2020^2-1}< 2\cdot\sqrt{2020^2}\)
\(\Leftrightarrow4040+2\cdot\sqrt{2020^2-1}< 4040+2\cdot\sqrt{2020^2}\)
\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\)
\(\Leftrightarrow\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)