Những câu hỏi liên quan
PT
Xem chi tiết
KL
9 tháng 1 2024 lúc 13:58

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

Bình luận (0)
NL
9 tháng 1 2024 lúc 14:00

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

Bình luận (0)
KL
9 tháng 1 2024 lúc 14:05

Bài 2

H = 3 + 3² + 3³ + ... + 3²⁰²²

⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³

⇒2H = 3H - H

= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)

= 3²⁰²³ - 3

⇒ H = (3²⁰²³ - 3) : 2

Bình luận (0)
TV
Xem chi tiết
KR
7 tháng 1 2024 lúc 16:05

`#3107.101107`

\(S=1+3^1+3^2+3^3+...+3^{101}\)

\(3S=3+3^2+3^3+...+3^{102}\)

\(3S-S=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)

\(2S=3+3^2+3^3+3^{102}-1-3-3^2-...-3^{101}\)

\(2S=3^{102}-1\)

\(S=\dfrac{3^{102}-1}{2}\)

Vậy, \(S=\dfrac{3^{102}-1}{2}.\)

Bình luận (0)
TL
7 tháng 1 2024 lúc 15:42

3s=3+3^2+3^3+....+3^102

3s-s=2s

2s=3^102-1

s=3^102-1 trên2

Bình luận (0)
H24
Xem chi tiết
AH
30 tháng 9 2023 lúc 10:38

a.

$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$

$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$

$\Rightarrow S=2^{2018}-1$

b.

$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$

$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$

$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
 

Bình luận (0)
AH
30 tháng 9 2023 lúc 10:39

Câu c, d bạn làm tương tự a,b. 

c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$

d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$

Bình luận (0)
TV
Xem chi tiết
OQ
11 tháng 9 2017 lúc 19:58

1.s= (27+33) + (28+32) + (29+31) + (26+30)

   s=      60     +     60     +      60    +       56

   s=                         60 . 3 + 56

   s=                              180 + 56

   s=                                 236

Bình luận (0)
TV
11 tháng 9 2017 lúc 19:59

còn câu 2

Bình luận (0)
BD
11 tháng 9 2017 lúc 20:06

 Mình làm phần 2 thôi . Phần một bạn kia làm rồi . 

Số số hạng của S :

  ( 132 - 68 ) : 4 + 1 = 17

Tổng S :

 ( 132 + 68 ) . 17 : 2 = 1700

đ/s : ...

Bình luận (0)
H24
Xem chi tiết
H24
30 tháng 11 2021 lúc 17:47

\(A=1+3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

Trừ theo vế:

\(\Rightarrow3A-A=\left(3+3^2+3^3+...3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-1\Rightarrow A=\dfrac{3^{101}-1}{2}\)

 

Bình luận (0)
TV
Xem chi tiết
DK
24 tháng 10 2021 lúc 10:27

undefined

Bình luận (0)
DC
24 tháng 10 2021 lúc 10:33

A =1+3+32 +33 +...+ 3100

3A=3.(30+3+32 +33 +...+ 3100)

3A=31+32 +33 +...+ 3101

3A-A=(31+32 +33 +...+ 3101)-(30+3+32 +33 +...+ 3100)

2A=3101-30

A=(3101-1) :2

vậy A=(3101-1) :2

t.i.c cho mình nha

 

Bình luận (0)
NP
Xem chi tiết
H24
11 tháng 3 2018 lúc 10:04

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(\Leftrightarrow S=1\left(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S-S=1+\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(\Leftrightarrow S=1-\frac{1}{60}=\frac{59}{60}\)

Bình luận (0)
LD
Xem chi tiết

Giải:

S=\(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\) 

Có 30 phân số; chia làm 3 nhóm

S<\(\left(\dfrac{1}{30}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{40}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{50}+...+\dfrac{1}{50}\right)\) 

S<\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\) 

S<\(\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\) 

⇒S<\(\dfrac{4}{5}\) (đpcm)

Chúc bạn học tốt!

Bình luận (0)
PD
Xem chi tiết