Những câu hỏi liên quan
LM
Xem chi tiết
AH
27 tháng 9 2023 lúc 0:26

Lời giải:

$(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}$

$=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}$

$=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}$

$=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})$

$=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})$

$=2(4^2-15)=2$ (đpcm)

Bình luận (0)
LL
Xem chi tiết
NL
5 tháng 7 2021 lúc 16:00

Bài 2 :

Ta có : \(\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5-2\sqrt{5}\sqrt{3}+3}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(5+3-2\sqrt{15}\right)\)

\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)\)

\(=2\left(16-15\right)=2.1=2\)

Bình luận (0)
NL
5 tháng 7 2021 lúc 15:58

Bài 1 :

a, ĐKXĐ : \(x\ge0\)

Ta có : \(PT\Leftrightarrow3\sqrt{5x}-4\sqrt{5x}+8\sqrt{5x}=21\)

\(\Leftrightarrow7\sqrt{5x}=21\)

\(\Leftrightarrow\sqrt{5x}=3\)

\(\Leftrightarrow x=\dfrac{9}{5}\left(TM\right)\)

Vậy ...

b, Ta có : \(PT\Leftrightarrow\sqrt{\left(x-5\right)^2}=4\)

\(\Leftrightarrow\left|x-5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)

Vậy ....

Bình luận (0)
AT
5 tháng 7 2021 lúc 16:02

\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}.\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right)\)

\(=1.\sqrt{8+2\sqrt{15}}.\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

 

Bình luận (0)
HS
Xem chi tiết
HS
7 tháng 10 2016 lúc 13:37

ai giúp vs

Bình luận (0)
NP
Xem chi tiết
H24
21 tháng 6 2019 lúc 8:22

1/ Bình phương hai vế, ta cần chứng minh \(a+b+2\sqrt{ab}>a+b\Leftrightarrow2\sqrt{ab}>0\)

Mà ta có \(2\sqrt{ab}\ge0\text{ Nhưng theo đề bài dấu "=" không xảy ra nên ta có đpcm. }\)

Bình luận (0)
BA
Xem chi tiết
H24
26 tháng 6 2021 lúc 14:54

`1)A=sqrt{4+sqrt{10+2sqrt5}}+sqrt{4-sqrt{10+2sqrt5}}`

`<=>A^2=4+sqrt{10+2sqrt5}+4-sqrt{10+2sqrt5}+2sqrt{16-10-2sqrt5}`

`<=>A^2=8+2sqrt{6-2sqrt5}`

`<=>A^2=8+2sqrt{(sqrt5-1)^2}`

`<=>A^2=8+2(sqrt5-1)`

`<=>A^2=6+2sqrt5=(sqrt5+1)^2`

`<=>A=sqrt5+1(do \ A>0)`

`b)B=sqrt{35+12sqrt6}-sqrt{35-12sqrt6}`

Vì `35+12sqrt6>35-12sqrt6`

`=>B>0`

`B^2=35+12sqrt6+35-12sqrt6-2sqrt{35^2-(12sqrt6)^2}`

`<=>B^2=70-2sqrt{361}`

`<=>B^2=70-2sqrt{19^2}=70-38=32`

`<=>B=sqrt{32}=4sqrt2(do \ B>0)`

`3)(4+sqrt{15})(sqrt{10}-sqrt6)sqrt{4-sqrt{15}}`

`=sqrt{4+sqrt{15}}.sqrt{4-sqrt{15}}.sqrt{4+sqrt{15}}(sqrt{10}-sqrt6)`

`=sqrt{16-15}.sqrt2(sqrt5-sqrt3).sqrt{4+sqrt{15}}`

`=sqrt{8+2sqrt{15}}(sqrt5-sqrt3)`

`=sqrt{5+2sqrt{5.3}+3}(sqrt5-sqrt3)`

`=sqrt{(sqrt5+sqrt3)^2}(sqrt5-sqrt3)`

`=(sqrt5+sqrt3)(sqrt5-sqrt3)`

`=5-3=2`

Bình luận (0)
H24
Xem chi tiết
NT
29 tháng 8 2021 lúc 14:51

2: \(\dfrac{\sqrt{108}}{\sqrt{3}}=6\)

13: \(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)

\(=\sqrt{5}-\sqrt{3}-2\sqrt{5}+\sqrt{3}\)

\(=-\sqrt{5}\)

14: \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

=2

Bình luận (0)
HP
29 tháng 8 2021 lúc 14:51

12.

\(\dfrac{\sqrt{108}}{\sqrt{3}}=\dfrac{\sqrt{36}.\sqrt{3}}{\sqrt{3}}=\sqrt{36}=6\)

13.

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left|\sqrt{3}-\sqrt{5}\right|-\left|2\sqrt{5}-\sqrt{3}\right|\)

\(=\sqrt{5}-\sqrt{3}-2\sqrt{5}+\sqrt{3}\)

\(=-\sqrt{5}\)

Bình luận (0)
HP
29 tháng 8 2021 lúc 14:54

14.

\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\)

\(=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{16-15}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=2\)

Bình luận (0)
LL
Xem chi tiết
NL
7 tháng 7 2021 lúc 19:10

\(=\left(\dfrac{\sqrt{10}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{6^2}}{\sqrt{6}}\right)\sqrt{4+\sqrt{15}}\)

\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4+\sqrt{15}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5+2\sqrt{3}\sqrt{5}+3}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)

Bình luận (0)
RK
7 tháng 7 2021 lúc 19:10

 \(VT\Leftrightarrow\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2=VP\left(dpcm\right)\)

Bình luận (0)
NL
7 tháng 7 2021 lúc 19:10

\(\left(\dfrac{\sqrt{30}-\sqrt{20}}{\sqrt{3}-\sqrt{2}}-\dfrac{6}{\sqrt{6}}\right)\sqrt{4+\sqrt{15}}=\left(\dfrac{\sqrt{10}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\sqrt{6}\right)\left(4+\sqrt{15}\right)\)

\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)\)

\(=5-3=2\)

Bình luận (0)
H24
Xem chi tiết
H24
17 tháng 6 2021 lúc 17:28

Bài 1

a) Đặt VT = A

<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)

<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)

<=> 2A = \(\left(5-3\right)^2=4\)

<=> A = 2

b) Đặt VT = B

<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)

<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)

<=> B = 8 

Bài 2

Đặt VT = A

<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)

<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)

<=> \(A=\sqrt{\sqrt{5}+1}\)

Bình luận (0)
TH
Xem chi tiết
DK
30 tháng 7 2016 lúc 15:10

(Đề của you hình như sai!)

\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)

Xét vế trái, ta có:

\(VT=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(\Leftrightarrow\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right).\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)\)

\(\Leftrightarrow\left(\sqrt{10}+\sqrt{6}\right).\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)\)

\(\Leftrightarrow5-\sqrt{15}+\sqrt{15}-3=2=VP\left(đpcm\right)\)

(Nhớ k cho mình với nhá!)

Bình luận (0)