Những câu hỏi liên quan
PB
Xem chi tiết
CT
17 tháng 5 2019 lúc 10:53

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông ABC ta có :

B C 2 = A B 2 + A C 2 = 3 2 + 4 2  = 25

Suy ra : BC = 5 (cm)

Theo tính chất hai tiếp tuyến giao nhau ta có:

AD = AE

BD = BF

CE = CF

Mà: AD = AB – BD

AE = AC – CF

Suy ra: AD + AE = AB – BD + (AC – CF)

= AB + AC – (BD + CF)

= AB + AC – (BF + CF)

= AB + AC – BC

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
VL
Xem chi tiết
NT
21 tháng 3 2023 lúc 13:47

a: góc OAD+góc OMD=180 độ

=>OADM nội tiếp

b: ΔOBC cân tại O

mà ON là đường cao

nên ONlà trung trực của BC

=>sđ cung NB=sd cung NC

=>góc BAN=góc CAN

=>AN là phân giác của góc BAC

góc DAI=1/2*sđ cung AN

góc DIA=1/2(sđ cung AB+sđ cung NC)

=1/2(sđ cung AB+sđ cung NB)

=1/2*sđ cung AN

=>góc DAI=góc DIA

=>ΔDAI cân tại D

Bình luận (0)
YD
Xem chi tiết
NT
25 tháng 5 2023 lúc 13:24

a: A,B,M,C cùng nằm trên (O)

=>ABMC nội tiếp

b: Xét ΔNCM và ΔNBA có

góc NCM=góc NBA

góc N chung

=>ΔNCM đồng dạng với ΔNBA

=>NC/NB=NM/NA

=>NC*NA=NB*NM

Bình luận (0)
NN
Xem chi tiết
NK
Xem chi tiết
NT
16 tháng 3 2023 lúc 10:15

a: Sửa đề: CF là đường cao

góc BEH+góc BFH=180 độ

=>BEHF nội tiếp

góc AFC=góc AEC=90 độ

=>AFEC nội tiếp

b: Để ΔABC vuông tại A thì BC là đường kính của (O)

Bình luận (0)
NL
Xem chi tiết
NT
31 tháng 7 2023 lúc 22:33

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

Bình luận (0)
JC
Xem chi tiết
PM
7 tháng 4 2017 lúc 15:55

ahihi

Bình luận (0)
TN
Xem chi tiết
NK
Xem chi tiết
MH
5 tháng 2 2022 lúc 10:00

Tham khảo:

Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)

Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)

Xét tỉ số:

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

Bình luận (3)
MH
5 tháng 2 2022 lúc 19:39

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}\left(b.c\right)^2}=\dfrac{a.b^2\dfrac{\left(a+2b\right)}{2}}{b^4}=\dfrac{a.b^2\left(a+2b\right)}{2b^4}=\dfrac{a\left(a+2b\right)}{2b^2}\)

\(=\dfrac{b\sqrt{2}\left(b\sqrt{2}+2b\right)}{2b^2}=\dfrac{b^2\sqrt{2}\left(\sqrt{2}+2\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

Bình luận (1)
NC
25 tháng 7 2022 lúc 20:56

Có câu trả lời là được mà

 

Bình luận (0)
N9
Xem chi tiết
LL
11 tháng 4 2022 lúc 21:46

a. Vì I là trung điểm của AC \(\Rightarrow\) OI \(\perp\) AC ( quan hệ giữa đk và dây )

                                            hay KI \(\perp\) AC

Xét tứ giác CIKH có: góc KIC + góc KHC = 90o + 90o = 180o ( tổng 2 góc đối = 180)

\(\Rightarrow\) tứ giác CIKH nội tiếp ( đpcm )

b. Ta có: góc CBD = góc CAD ( 2 góc nội tiếp cùng chắn cung DC ) (1)

Xét \(\Delta\) AKC có: KI là đường trung tuyến đồng thời là đường cao

\(\Rightarrow\) \(\Delta\) AKC là tam giác cân tại K \(\Rightarrow\) góc CAK = góc ACK

                                                  hay góc CAD = góc ACK (2)

Từ (1), (2) \(\Rightarrow\) góc ACK = góc CBD ( đpcm )

Bình luận (0)