§3. Các hệ thức lượng giác trong tam giác và giải tam giác

NK

Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số \(\dfrac{R}{r}\) bằng

Giải chi tiết cho mk vs

MH
5 tháng 2 2022 lúc 10:00

Tham khảo:

Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)

Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)

Xét tỉ số:

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

Bình luận (3)
MH
5 tháng 2 2022 lúc 19:39

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}\left(b.c\right)^2}=\dfrac{a.b^2\dfrac{\left(a+2b\right)}{2}}{b^4}=\dfrac{a.b^2\left(a+2b\right)}{2b^4}=\dfrac{a\left(a+2b\right)}{2b^2}\)

\(=\dfrac{b\sqrt{2}\left(b\sqrt{2}+2b\right)}{2b^2}=\dfrac{b^2\sqrt{2}\left(\sqrt{2}+2\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

Bình luận (1)
NC
25 tháng 7 2022 lúc 20:56

Có câu trả lời là được mà

 

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
RN
Xem chi tiết
HC
Xem chi tiết
UN
Xem chi tiết
TP
Xem chi tiết
KM
Xem chi tiết
DP
Xem chi tiết