Những câu hỏi liên quan
H24
Xem chi tiết
NT
21 tháng 1 2024 lúc 20:17

Để phương trình có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)

=>\(m-1\ne2m\)

=>\(m\ne-1\)

\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-2xm+m^2+5m=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1-2m\right)=-m^2-5m+3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(-m-1\right)=-m^2-2m-1=-\left(m+1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\cdot\left(-1\right)\cdot\left(m+1\right)=-\left(m+1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)

\(x^2-y^2=24\)

=>\(\left(m+1\right)^2-\left(m-3\right)^2=24\)

=>\(m^2+2m+1-m^2+6m-9=24\)

=>8m-8=24

=>m=4(nhận)

Bình luận (0)
H24
Xem chi tiết
NT
18 tháng 1 2024 lúc 21:44

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)

=>\(2m\ne m-1\)

=>\(m\ne-1\)(1)

\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m-1\right)-2mx+m^2+5m-3m+1=0\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(-m-1\right)+m^2+2m+1=0\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m+1\right)=\left(m+1\right)^2\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)

\(x^2-y^2< 4\)

=>\(\left(m+1\right)^2-\left(m-3\right)^2< 4\)

=>\(m^2+2m+1-m^2+6m-9< 4\)

=>8m-8<4

=>8m<12

=>\(m< \dfrac{3}{2}\)

Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m\ne-1\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
1 tháng 2 2024 lúc 8:44

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)

=>\(2m\ne m-1\)

=>\(m\ne-1\)

\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1\right)-2mx+m^2+5m=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1-2m\right)=-m^2-5m+3m-1=-m^2-2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(-m-1\right)=-\left(m+1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)

\(x^2-y^2< 4\)

=>\(\left(m+1\right)^2-\left(m-3\right)^2< 4\)

=>\(m^2+2m+1-m^2+6m-9< 4\)

=>8m-8<4

=>8m<12

=>\(m< \dfrac{3}{2}\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m\ne-1\end{matrix}\right.\)

Bình luận (0)
NM
Xem chi tiết
NT
2 tháng 1 2022 lúc 10:04

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

Bình luận (1)
H24
Xem chi tiết
HP
5 tháng 1 2021 lúc 17:22

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

Bình luận (0)
HP
5 tháng 1 2021 lúc 17:33

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

Bình luận (0)
JP
Xem chi tiết
NT
26 tháng 2 2022 lúc 22:30

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-3\right)\)

\(=4m^2-8m+4-8m+12\)

\(=4m^2-16m+16\)

\(=\left(2m-4\right)^2>=0\)

Do đó: Phương trình luôn có nghiệm

b: Để phương trình có hai nghiệm trái dấu thì 2m-3<0

hay m<3/2

c: Để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia thì ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x_2=-2m+2\\x_1=2x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-2}{3}\\x_1=\dfrac{4m-4}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=2m-3\)

\(\Leftrightarrow2m-3=\dfrac{2m-2}{3}\cdot\dfrac{4m-4}{3}\)

\(\Leftrightarrow8\left(m-1\right)^2=9\left(2m-3\right)\)

\(\Leftrightarrow8m^2-16m+8-18m+27=0\)

\(\Leftrightarrow8m^2-34m+35=0\)

\(\text{Δ}=\left(-34\right)^2-4\cdot8\cdot35=36>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{34-6}{16}=\dfrac{28}{16}=\dfrac{7}{4}\\m_2=\dfrac{34+6}{16}=\dfrac{40}{16}=\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (0)
TT
Xem chi tiết
NT
14 tháng 4 2022 lúc 14:39

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

Bình luận (0)
H24
Xem chi tiết
HP
2 tháng 1 2021 lúc 16:46

ĐK; \(-1\le x\le3\)

Đặt \(\sqrt{-x^2+2x+3}=t\left(0\le t\le2\right)\)

\(pt\Leftrightarrow m+1=-x^2+2x+3+4\sqrt{-x^2+2x+3}\)

\(\Leftrightarrow m+1=f\left(t\right)=t^2+4t\)

\(f\left(0\right)=0;f\left(2\right)=12\)

Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le m+1\le maxf\left(t\right)\)

\(\Leftrightarrow0\le m+1\le12\)

\(\Leftrightarrow-1\le m\le11\)

Bình luận (0)
ND
Xem chi tiết
H24
9 tháng 3 2023 lúc 17:28

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

Bình luận (1)