Ôn tập phương trình bậc hai một ẩn

JP

Cho phương trình \(x^2-2\left(m-1\right)x+2m-3=0\left(1\right)\)

a) Chứng minh \(\left(1\right)\) luôn có nghiệm với mọi m.

b) Tìm giá trị của m để \(\left(1\right)\) có 2 nghiệm trái dấu.

c) Tìm giá trị của m để \(\left(1\right)\) có 2 nghiệm sao cho nghiệm này gấp đôi nghiệm kia.

 
NT
26 tháng 2 2022 lúc 22:30

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-3\right)\)

\(=4m^2-8m+4-8m+12\)

\(=4m^2-16m+16\)

\(=\left(2m-4\right)^2>=0\)

Do đó: Phương trình luôn có nghiệm

b: Để phương trình có hai nghiệm trái dấu thì 2m-3<0

hay m<3/2

c: Để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia thì ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x_2=-2m+2\\x_1=2x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-2}{3}\\x_1=\dfrac{4m-4}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=2m-3\)

\(\Leftrightarrow2m-3=\dfrac{2m-2}{3}\cdot\dfrac{4m-4}{3}\)

\(\Leftrightarrow8\left(m-1\right)^2=9\left(2m-3\right)\)

\(\Leftrightarrow8m^2-16m+8-18m+27=0\)

\(\Leftrightarrow8m^2-34m+35=0\)

\(\text{Δ}=\left(-34\right)^2-4\cdot8\cdot35=36>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{34-6}{16}=\dfrac{28}{16}=\dfrac{7}{4}\\m_2=\dfrac{34+6}{16}=\dfrac{40}{16}=\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
JP
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết