Những câu hỏi liên quan
PT
Xem chi tiết
KL
23 tháng 12 2023 lúc 12:07

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

Bình luận (0)
BD
Xem chi tiết
TS
31 tháng 3 2016 lúc 21:43

Nếu đúng là zậy thì mk biết làm.

A = 3 + 32 + 33 + ...  + 32004

A = (  3 + 32 + 3+ 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )

A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )

A = 3.40 + ... + 32001.40

A = ( 3 + 35 + ...  32001) . 40

=> A chia hết cho 40

Bình luận (0)
TS
31 tháng 3 2016 lúc 21:38

A = 3 + 32 + 33 +34 + ... + 32004 phải ko? 

Bình luận (0)
BD
31 tháng 3 2016 lúc 21:56

sao lai la 3^9 vay bn

Bình luận (0)
MY
Xem chi tiết
LN
25 tháng 9 2016 lúc 14:05

mình ko biết

Bình luận (0)
NH
5 tháng 2 2021 lúc 21:50

phải là chứng minh A chia hết cho 121

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
MP
1 tháng 1 2024 lúc 15:31

Các số hạng trong tổng \(A\) đều chia hết cho \(3\) nên \(\Rightarrow A⋮3\)

Vậy \(A⋮3\)

Bình luận (0)
NB
1 tháng 1 2024 lúc 17:48

A=3+3^2+3^3+3^4+...+3^12

A=(3+3^2+3^3)+(3^4+3^5+3^6)+.....+(3^10+3^11+3^12)   (gộp nhóm)

A=3.(1+3+3^2)+3^4.(1+3+3^2)+......+3^10.(1+3+3^2)        (phân phối)

A=3.13+3^4.13+....+3^10.13

A=13.(3+3^4+....+3^10)

Vì 13⋮13

nên 13.(3+3^4+...+3^10)⋮13

=>A⋮13

Bình luận (0)
TL
1 tháng 1 2024 lúc 19:16

chia hết cho 13 hay 3 vậy bạn?(mink thấy sai sai)

Bình luận (0)
KB
Xem chi tiết
DH
13 tháng 10 2021 lúc 17:35

\(B=3+3^2+3^3+...+3^{120}\)

Dễ thấy \(B\)chia hết cho \(3\)do là tổng của các số hạng chia hết cho \(3\).

\(B=3+3^2+3^3+...+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{119}\right)⋮4\)

\(B=3+3^2+3^3+...+3^{120}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{118}\right)⋮13\)

Bình luận (0)
 Khách vãng lai đã xóa
BN
Xem chi tiết
DH
21 tháng 10 2021 lúc 9:07

a) \(B\)là tổng các số hạng chia hết cho \(3\)nên chia hết cho \(3\).

b) \(B=3+3^2+...+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{119}\right)⋮4\)

c) \(B=3+3^2+...+3^{120}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{118}\right)⋮13\)

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
NT
13 tháng 11 2023 lúc 18:20

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

Bình luận (0)
NQ
Xem chi tiết
KR
8 tháng 11 2023 lúc 22:33

`#3107.101107`

\(A=1+3+3^2+3^3+...+3^{101}\)

$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$

$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2)  + ... + 3^{99}(1 + 3 + 3^2)$

$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$

$A = 13(1 + 3^3 + ... + 3^{99})$

Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`

`\Rightarrow A \vdots 13`

Vậy, `A \vdots 13.`

Bình luận (1)
H24
8 tháng 11 2023 lúc 22:35

\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)

Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)

nên \(A\vdots13\)

\(\text{#}Toru\)

Bình luận (1)
NT
Xem chi tiết
LN
Xem chi tiết