Cho a,b,c là các số thực dương. CMR \(a^2+b^2+c^2+abc+4\ge2\left(ab+bc+ac\right)\)
Giả sử a b c là các số thực dương tm
\(ab+bc+ac+abc\le4\)
CMR: \(a^2+b^2+c^2+a+b+c\ge2\left(ab+bc+ac\right)\)
CMR: Với các số thực dương a;b;c thì\(\dfrac{a^3+2abc+b^3}{c^2+ab}+\dfrac{a^3+2abc+c^3}{b^2+ac}+\dfrac{b^3+2abc+c^3}{a^2+bc}\ge2\left(a+b+c\right)\)
Cho a,b,c,d là các số thực không âm thỏa \(a^2+b^2+c^2+d^2=4\). CMR:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{\sqrt{2}}\sqrt{2+ab+ac+ad+bc+bd+dc}\)
BĐT cần c/m tương đương:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)
\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)
\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)
\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)
Dễ dàng chứng minh điều này bằng AM-GM:
\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)
\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)
Lại có:
\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)
\(\Rightarrow a+b+c+d\le4\) (2)
(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)
Với a,b,c là các số thực dương thỏa mãn ab+bc+ca=1. CMR
\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\ge2\)
\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)
\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}}\)
\(=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca=1\left(1\right)\)
Áp dụng BĐT Cô-si ta có:
\(a+b\ge2\sqrt{ab}\)
Tương tự:\(b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(2\right)\)
Từ (1) và (2) suy ra:
\(P\ge1+\frac{8abc}{8abc}=2\left(đpcm\right)\)
Dấu '=' xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
:))
ở phần cô si phần cuối là bn sai r
vì >= nhưng ở dưới mẫu nên bị đảo lại thành =< nên bn lm như thế k đúng
đay là link giải https://diendan.hocmai.vn/threads/bdt-a-2-b-2-c-2-dfrac-8abc-a-b-b-c-c-a-geq-2.341255/
Em không chắc đâu nha....Em mới học BĐT nên còn khá ngu về phần này,xin được chỉ giáo thêm ạ! :D
Biển đổi P trở thành\(P=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) (như a/c Con Chim 7 Màu gì đó)
\(=\left(\frac{a^2+b^2+c^2}{ab+bc+ca}-1\right)+\left(\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)-1+2\)
\(=\frac{2\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left(ab+bc+ca\right)}-\frac{a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+2\)
\(=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2\left(ab+bc+ca\right)}-\frac{a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+2\)
\(=\Sigma\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-b\right)^2+2\)
Để cho gọn,ta đặt \(P=S_c\left(a-b\right)^2+S_b\left(c-a\right)^2+S_a\left(b-c\right)^2+2\)
Với \(S_c=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\) (như trên)
\(S_a=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{a}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)
\(S_b=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{b}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)
Ta đi chứng minh: \(S_a;S_b;S_c\ge0\).Thật vậy,xét Sc:
Ta chứng minh \(S_c=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\ge\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2c\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2c\left(ab+bc+ca\right)\) (biến đổi làm cho 2 vế đồng bậc)
Chuyển vế qua ta cần chứng minh \(ab\left(a+b\right)+bc\left(b-c\right)+ca\left(a-c\right)\ge0\) (1)
Giả sử \(a\ge b\ge c\Rightarrow\)BĐT (1) đúng nên \(S_c\ge0\)
Do tính đối xứng của P nên ta cũng có \(S_b;S_c\ge0\)
Từ đây suy ra \(=\Sigma\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-b\right)^2+2\ge2\left(đpcm\right)\)
cho a,b,c là số thực dương chứng minh
\(\dfrac{2\left(a^4+b^4+c^4\right)}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}+\dfrac{ab+bc+ca}{a^3+b^3+c^3}\ge2\)
Giả sử a , b, c là các số thực dương thỏa mãn ab + bc + ca + abc nhỏ hơn hoặc bằng 4. Chứng minh rằng: \(a^2+b^2+c^2+a+b+c\ge2\left(ab+bc+ca\right)^{ }\)
Cho a,b, c là các số thực dương. Chứng minh rằng:
Chứng minh: \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\)
Bai này quen quen ! Mình còn ghi trong vở nè !
Chứng minh:
Áp dụng bất đẳng thức Schur ta có :
\(\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2+\frac{9abc}{a+b+c}\ge4\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)+\frac{9abc}{a+b+c}\ge4\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\left(đpcm\right)\)
1. cho a,b,c là các số dương .Cmr :
\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{a^3+c^3}{ac}\ge2\left(a+b+c\right)\)
Chứng minh: \(x^3+y^3\ge xy\left(x+y\right)\left(1\right)\)
\(x^3+y^3\ge xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^3\ge4xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) đúng
\(\Rightarrow\left(1\right)\) đúng
Áp dụng BĐT \(x^3+y^3\ge xy\left(x+y\right)\)
\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{c^3+a^3}{ca}\)
\(\ge\dfrac{ab\left(a+b\right)}{ab}+\dfrac{bc\left(b+c\right)}{bc}+\dfrac{ca\left(c+a\right)}{ca}\)
\(=2\left(a+b+c\right)\)
a,b,c là các số thực dương thỏa mãn a+b+c=3. CMR: \(\dfrac{a\left(a+bc\right)^2}{b\left(ab+2c^2\right)}+\dfrac{b\left(b+ca\right)^2}{c\left(bc+2a^2\right)}+\dfrac{c\left(c+ab\right)^2}{a\left(ca+2b^2\right)}>=4\)
Trước hết theo BĐT Schur bậc 3 ta có:
\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)
\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
Áp dụng (1):
\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)