Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

RX

1. cho a,b,c là các số dương  .Cmr :

\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{a^3+c^3}{ac}\ge2\left(a+b+c\right)\)

HP
20 tháng 1 2021 lúc 21:54

Chứng minh: \(x^3+y^3\ge xy\left(x+y\right)\left(1\right)\)

\(x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^3\ge4xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) đúng

\(\Rightarrow\left(1\right)\) đúng

Áp dụng BĐT \(x^3+y^3\ge xy\left(x+y\right)\)

\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{c^3+a^3}{ca}\)

\(\ge\dfrac{ab\left(a+b\right)}{ab}+\dfrac{bc\left(b+c\right)}{bc}+\dfrac{ca\left(c+a\right)}{ca}\)

\(=2\left(a+b+c\right)\)

Bình luận (1)

Các câu hỏi tương tự
TV
Xem chi tiết
NC
Xem chi tiết
VT
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
KR
Xem chi tiết
QD
Xem chi tiết
VT
Xem chi tiết
TY
Xem chi tiết