Những câu hỏi liên quan
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 10:48

a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).

b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} >  2.2 - 1\) hay \(4 > 3\) (luôn đúng).

c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).

d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 21:17

a) Mệnh đề sai, vì chỉ có \(x =  - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.

b) Mệnh đề đúng, vì  \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”

 c) Mệnh đề sai, vì có \(a =  - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}}  = 2 \ne a\)

Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}}  \ne a\)”.

Bình luận (0)
NQ
Xem chi tiết
NT
16 tháng 10 2023 lúc 10:52

loading...  loading...  loading...  

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 21:14

a) Mệnh đề sai, vì \(x = 0 \in \mathbb{R}\) nhưng \({0^2}\) không lớn hơn 0.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”

b) Mệnh đề đúng, vì \(x = 1 \in \mathbb{R}\) thỏa mãn \({1^2} = 5.1 - 4\)

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},{x^2} \ne 5x - 4\)”

 c) Mệnh đề sai, vì \(2x + 1 = 0 \Leftrightarrow x =  - \frac{1}{2} \notin \mathbb{Z}\)

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{Z},2x + 1 \ne 0\)”

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 10:59

Phủ định của mệnh đề A là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + 4x + 5 = 0\)”

Phủ định của mệnh đề B là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + x < 1\)”

Phủ định của mệnh đề C là mệnh đề “\(\forall x \in \mathbb{Z},2{x^2} + 3x - 2 \ne 0\)”

Phủ định của mệnh đề D là mệnh đề “\(\forall x \in \mathbb{Z},{x^2} \ge x\)”

Bình luận (0)
H24
Xem chi tiết
NL
10 tháng 10 2019 lúc 15:54

Mệnh đề trên là mệnh đề đúng mà, sai đâu mà sai bạn? Chắc giáo viên nhầm đó

Một mệnh đề "tồn tại" muốn đúng thì chỉ cần chỉ ra một trường hợp đúng (nhiều hơn 1 cũng ko vấn đề)

Một mệnh đề "với mọi" thì chỉ cần chỉ ra 1 trường hợp sai, mệnh đề đó sẽ sai (có nghĩa muốn "với mọi" đúng thì phải đúng tất cả trường hợp)

Bình luận (0)
SK
Xem chi tiết
TH
18 tháng 4 2017 lúc 7:44

a) \(\exists x\in R:x.1\ne x\)

mệnh đề phủ định sai.

b) \(\exists x\in R:x.x\ne1\)

mệnh đề phủ định đúng.

c) \(\exists n\in Z:n\ge n^2\)

mệnh đề phủ định đúng.

Bình luận (0)
NQ
Xem chi tiết
NT
16 tháng 10 2023 lúc 10:30

loading...  loading...  loading...  loading...  loading...  loading...  

Bình luận (0)
MN
Xem chi tiết
NL
1 tháng 7 2019 lúc 20:39

Bài 1:

a/ Với \(x=0\Rightarrow0-0+1>0\) đúng

Vậy mệnh đề đúng

Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)

Hoặc: \(∄x\in R,x^3-x^3+1>0\)

b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Vậy mệnh đề đã cho là đúng

Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Câu 2:

a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)

\(\Rightarrow\) Mệnh đề sai

b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)

\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)

Câu 3:

P là mệnh đề đúng

\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"

\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"

\(\overline{P}\) là mệnh đề sai

Chứng minh P đúng:

Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\)\(b\ne0\)

\(\Rightarrow2x=\frac{2a}{b}\)

Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ

b/ Mệnh đề đảo của P:

" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"

Chứng minh tương tự như trên

c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"

Bài 4:

a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)

b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)

Bình luận (0)