Giải phương trình \(\sqrt{x+3}+\sqrt{2x+1}=4-x\)
Giải các phương trình sau :
1/\(\sqrt{x+2+4\sqrt{x-2}}=5\)
2/\(\sqrt{x+3+4\sqrt{x-1}}=2\)
3/\(\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\)
4/\(\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\)
\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)
\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)
\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)
a) Giải phương trình: \(\frac{x^2}{2}+\frac{x}{2}+1=\sqrt{2x^3-x^2+x+1}\)
b) Giải hệ phương trình \(\hept{\begin{cases}2x+3+\sqrt{4-y}=4\\\sqrt{2y+3}+\sqrt{4-x}=4\end{cases}}\)
Giải bất phương trình: \(\sqrt[3]{x+1}+\sqrt{2x+4}< 3-x\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt[3]{x+1}-1\right)+\left(\sqrt{2x+4}-2\right)< -x\sqrt{2}\)
=>\(\dfrac{x+1-1}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}+\dfrac{2x+4-4}{\sqrt{2x+4}+2}+x\sqrt{2}< 0\)
=>x<0
=>-1<x<0
Giải các phương trình sau
a, \(\sqrt[3]{1-2x}+3=0\)
b, \(\sqrt{x-4\sqrt{x}+4}\) + \(\sqrt{x+6\sqrt{x}+9}\) = 5
a. \(\sqrt[3]{1-2x}+3=0\left(ĐK:x\le\dfrac{1}{2}\right)\)
<=> \(\sqrt[3]{1-2x}=-3\)
<=> \(1-2x=\left(-3\right)^3\)
<=> \(1-2x=-27\)
<=> \(-2x=-28\)
<=> \(x=14\left(TM\right)\)
giải phương trình:\(\sqrt{2x-3}-\sqrt{x+1}=x-4\)
ĐKXĐ: \(x\ge\dfrac{3}{2}\).
PT đã cho tương đương:
\(\dfrac{x-4}{\sqrt{2x-3}+\sqrt{x+1}}=x-4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\Leftrightarrow x=4\left(TMĐK\right)\\\sqrt{2x-3}+\sqrt{x+1}=1\left(1\right)\end{matrix}\right.\).
Ta có \(\left(1\right)\Leftrightarrow2x-3+x+1+2\sqrt{\left(2x-3\right)\left(x+1\right)}=1\)
\(\Leftrightarrow2\sqrt{\left(2x-3\right)\left(x+1\right)}=3-3x\).
Do đó 3 - 3x \(\ge0\Leftrightarrow x\le1\) (trái với đkxđ).
Suy ra (1) vô nghiệm.
Vậy ncpt là x = 4.
giải phương trình \(\sqrt{x+3}+\sqrt{2x-1}=4-x\)
\(\sqrt{x+3}+\sqrt{2x-1}=4-x\)(1)
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow\sqrt{x+3}-2+\sqrt{2x-1}-1+x-1=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x+3}+2}+\dfrac{2\left(x-1\right)}{\sqrt{2x-1}+1}+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x+3}+2}+\dfrac{2}{\sqrt{2x-1}+1}+1\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\dfrac{1}{\sqrt{x+3}+2}+\dfrac{2}{\sqrt{2x-1}+1}+1\)>0)
\(\Leftrightarrow x=1\)(thỏa mãn)
Vậy phương trình có nghiệm là x=1
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
giải các phương trình :
a) \(\sqrt{-x^2+x+4}=x-3\)
b)\(\sqrt{-2x^2+6}=x-1\)
c) \(\sqrt{x+2}=1+\sqrt{x-3}\)
a) \(\sqrt{-x^2+x+4}=x-3\left(đk:x\ge3\right)\)
\(-x^2+x+4=x^2-6x+9\)
\(2x^2-7x-5=0\)
\(\Delta=49-4.2.\left(-5\right)=89\)
\(\left[{}\begin{matrix}x=\dfrac{7+\sqrt{89}}{4}\left(TM\right)\\x=\dfrac{7-\sqrt{89}}{4}\left(L\right)\end{matrix}\right.\)
b) \(\sqrt{-2x^2+6}=x-1\left(đk:x\ge1\right)\)
\(-2x^2+6=x^2-2x+1\)
\(3x^2-2x-5=0\)
\(\Delta=4+4.3.5=64\)
\(\left[{}\begin{matrix}x=\dfrac{2-8}{6}=-1\left(L\right)\\x=\dfrac{2+8}{6}=\dfrac{5}{3}\left(TM\right)\end{matrix}\right.\)
c) \(\sqrt{x+2}=1+\sqrt{x-3}\left(Đk:x\ge3\right)\)
\(x+2=1+x-3+2\sqrt{x-3}\)
\(\sqrt{x-3}=2\)
\(x-3=4\)
\(x=7\)
Giải bất phương trình: \(3\left(x-2\right)+\sqrt{3x-4}< 3\sqrt{2x+1}+\sqrt{x-3}\)