Tìm m để khoảng cách từ O đến đường thẳng d:y=(1-3m)x+m lớn nhất
tìm m để khoảng cách từ gốc tọa độ đến đường thẳng d:y= (1-3m)x+m lớn nhất
y=(1-3m)x+m
=>(1-3m)x-y+m=0
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(1-3m\right)+0\cdot\left(-1\right)+m\right|}{\sqrt{\left(1-3m\right)^2+1}}=\dfrac{\left|m\right|}{\sqrt{\left(1-3m\right)^2+1}}\)
Để d(O;(d)) lớn nhất thì m=0
cho đường thẳng d:y = (2m - 5)x - 1 + m = 0 tìm m sao cho khoảng cách từ o đến d là nhỏ nhất, lớn nhất
Cho đường thẳng (d): y = (3m - 2) + m - 2 c) Tìm m để khoảng cách từ O đến (d) lớn nhất
Chắc pt đường thẳng là \(y=\left(3m-2\right)x+m-2\)
Viết lại dưới dạng:
\(\left(3x+1\right)m-\left(2x+y+2\right)=0\)
Ta được điểm \(M\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\) là điểm cố định thuộc (d)
Gọi H là chân đường vuông góc hạ từ O xuống d thì theo định lý đường xiên - đường vuông góc ta luôn có \(OH\le OM\Rightarrow OH_{max}=OM\) khi H trùng M hay đường thẳng (d) vuông góc OM
Phương trình OM có dạng: \(y=4x\Rightarrow\) (d) vuông góc OM khi \(\left(3m-2\right).4=-1\)
\(\Rightarrow m=\dfrac{7}{12}\)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng y=mx-3m+4 Tìm m để khoảng cách từ O đến đường thẳng (d) là lớn nhất. Tìm giá trị lớn nhất đó.
Cho đường thẳng d1 : y=(m-1)x+2m+1
a, Tìm m để đường thẳng d1 cắt trục tung tại điểm có tung độ là -3 . Vẽ đồ thị hàm số vừa tìm được và chứng tỏ giao điểm đồ thị vừa tìm được với đường thẳng d:y=x+1 nằm trên trục hoành
b. Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng d1 đạt giá trị lớn nhất .
Cho đường thẳng d có phương trình y=(3m+1)x-6m-1 m là tham số Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng d là lớn nhất
Lời giải:
ĐK: $3m+1\neq 0$
Gọi $A,B$ lần lượt là giao điểm của $(d)$ với $Ox,Oy$
Vì $A\in Ox$ nên $y_A=0$
$y_A=(3m+1)x_A-6m-1=0$
$\Rightarrow x_A=\frac{6m+1}{3m+1}$
Vậy $A(\frac{6m+1}{3m+1},0)$
Tương tự: $B(0, -6m-1)$
Gọi $h$ là khoảng cách từ $O$ đến $(d)$
Khi đó, theo hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$
$=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$
$=\frac{(3m+1)^2}{(6m+1)^2}+\frac{1}{(6m+1)^2}$
$=\frac{(3m+1)^2+1}{(6m+1)^2}$
Để $h$ max thì $\frac{1}{h^2}$ min
Hay $\frac{(3m+1)^2+1}{(6m+1)^2}$ min
Áp dụng BĐT Bunhiacopxky:
$[(3m+1)^2+1][2^2+(-1)^2]\geq [2(3m+1)+(-1)]^2=(6m+1)^2$
$\Rightarrow 5[(3m+1)^2+1]\geq (6m+1)^2$
$\Rightarrow \frac{1}{h^2}\geq \frac{1}{5}$
Giá trị này đạt tại $\frac{3m+1}{2}=\frac{1}{-1}$
$\Leftrightarrow m=-1$
Cho đường thẳng (d3) y=2mx-3m+1. Tìm m sao cho khoảng cách từ O đến đường thẳng (d3) là lớn nhất
cho đường thẳng (d): y=m(2x-1)+3-2x
a) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng 1.
a) Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) đạt giá trị lớn nhất.
cho hàm y=2x+m-1
A) tìm m để đồ thị qua A( 1;3). Với m tìm được, vẽ đồ thị
B)tìm m để đồ thị cắt y=x-1 tại 1 điểm trên trục hoành
c) tìm m để đường d:y=3x+m+2 cắt đường y=x+3 tại 1 điểm trên trục hoành
D) tìm m để khoảng cách từ gốc O đến d:y=(m+3)x-4 là 3
a: Thay x=1 và y=3 vào (d), ta đc:
m-1+2=3
=>m+1=3
=>m=2
b: Thay y=0 vào (d), ta đc:
x-1=0
=>x=1
Thay x=1 và y=0 vào (d1), ta được:
2*1+m-1=0
=>m=-1