Tìm x, biết: x 2 - 4 - 2 x + 2 = 0
a) Tìm x,y biết x/5 =y/3 và x^2+ y^2 =4
b) Tìm x biết x-2/x-1 = x+4/x+1
cảm ơn mọi người nhìu nha!!!
Tìm x biết (x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0
$(x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0$
$\Leftrightarrow(x^2-2)^2-4(x^2-2)(x-1)+4(x-1)^2=0$
$\Leftrightarrow(x^2-2)^2-2\cdot(x^2-2)\cdot2(x-1)+[2(x-1)]^2=0$
$\Leftrightarrow[(x^2-2)-2(x-1)]^2=0$
$\Leftrightarrow(x^2-2-2x+2)^2=0$
$\Leftrightarrow(x^2-2x)^2=0$
$\Leftrightarrow x^2-2x=0$
$\Leftrightarrow x(x-2)=0$
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: $x\in\{0;2\}$.
bài 1 tìm các số nguyên x,y biết a)2^x=8
b) 3^4=27
c)(-1,2).x=(-1,2)^4
d)x:(-3/4)=(-3/4)^2
e)(x+1)^3=-125
f)(x-2)^3=64
bài 2 tìm các số nguyên x,y biết
a)(x-1,2)^2=4
d)(x-1,5)^2=9
e)(x-2)^3=64
a) \(2^x=8\)
⇔ \(2^x=2^3\)
⇒ \(x=3\)
b) \(3^x=27\)
⇔ \(3^x=3^3\)
⇒ \(x=3\)
c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)
d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)
d) \(\left(x+1\right)^3=-125\)
⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)
⇔ \(x+1=-5\)
⇔ \(x=-5-1=-6\)
2:
a: (x-1,2)^2=4
=>x-1,2=2 hoặc x-1,2=-2
=>x=3,2(loại) hoặc x=-0,8(loại)
b: (x-1,5)^2=9
=>x-1,5=3 hoặc x-1,5=-3
=>x=-1,5(loại) hoặc x=4,5(loại)
c: (x-2)^3=64
=>(x-2)^3=4^3
=>x-2=4
=>x=6(nhận)
tìm x biết x^2 (x^2+ 4 ) - x^2 -4 = 0
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm1\)
1. Tìm số nguyên x, y biết,
(x + 2)2 + (y -4)2 + (2y -4)4 = 0
2. Tìm số nguyên x, biết
x2 - 2x = 3
\(1,\)
\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)
Do đó PT vô nghiệm
\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
a, tìm x biết : \(|x-1|+|x+3|=4\)
b, tìm x biết: \(|x^2+|6x-2||=x^2+4\)
c, tìm x biết; \(|2x+3|-2|4-x|=5\)
a. Tìm số nguyên x biết (/x/-3)(x^2+4) nhỏ hơn hoặc bằng 4
b. Tìm x,y,z biết /x-1:2/+/y+2:3/+/x^2+xz/
1) 3(x-2) + 4(x-1) = 25 2) (5x-3)(x-2) = (x-1)(x-2) 3) (x-2)² = 4(x-1)²
\(3\left(x-2\right)+4\left(x-1\right)=25\)
\(\Leftrightarrow3x-6+4x-4=25\)
\(\Leftrightarrow7x=35\)
\(\Leftrightarrow x=5\)
\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{2}\end{matrix}\right.\)
\(\left(x-2\right)^2=4\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[\left(x-2\right)-2\left(x-1\right)\right]\left[\left(x-2\right)+2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2-2x+2\right)\left(x-2+2x-2\right)=0\)
\(\Leftrightarrow\left(-x\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2