Tìm hệ số của x 5 trong triển khai thành đa thức của 2 x + 3 8 .-
A. − C 8 5 .2 5 .3 3
B. C 8 3 .2 5 .3 3
C. C 8 3 .2 3 .3 5
D. C 8 5 .2 2 .3 6
Tìm hệ số của số hạng chứa \(x^5\) trong khai triển của đa thức: \(\left(x+2\right)^7\)
Số hạng tổng quát của khai triển: \(C_7^k.x^k.2^{7-k}\)
Số hạng chứa \(x^5\Leftrightarrow k=5\)
Hệ số của số hạng đó là: \(C_7^5.2^2=...\)
Tìm hệ số của x 7 trong khai triển f ( x ) = 1 - 3 x + 2 x 2 10 thành đa thức
A. 204120
B. -262440
C. -4320
D. -62640
Tìm hệ số của x 3 trong khai triển f(x)= ( 2 x + 1 ) 25 thành đa thức?
A.300.
B.2300.
C.1200.
D.18400.
Tìm hệ số của x 3 trong khai triển x = x 0 ⇔ f ' x 0 = 0 f ' ' x 0 > 0 thành đa thức?
A. 300
B.2300
C. 1200
D.18400
Tìm hệ số lớn nhất trong các hệ số của các số hạng khi khai triển nhị thức sau thành đa thức (1+x)101
Giúp với ạ
Hệ số lớn nhất sẽ tương ứng với số hạng đứng chính giữa
=>Hệ số lớn nhất là \(C^{51}_{101}\)
Tìm hệ số của x13 trong khai triển \(f\left(x\right)=\left(\dfrac{1}{4}+x+x^2\right)^3\left(2x+1\right)^{15}\) thành đa thức
\(f\left(x\right)=\sum\limits^3_{i=0}C_3^i\left(x+x^2\right)^i.\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k\left(2x\right)^k\)
\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}C_3^i.C_i^jx^j.\left(x^2\right)^{i-j}\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k.2^k.x^k\)
\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}\sum\limits^{15}_{k=0}C_3^iC_i^jC_{15}^k\left(\dfrac{1}{4}\right)^{3-i}.2^k.x^{2i+k-j}\)
Số hạng chứa \(x^{13}\) thỏa mãn:
\(\left\{{}\begin{matrix}0\le i\le3\\0\le j\le i\\0\le k\le15\\2i+k-j=13\end{matrix}\right.\)
\(\Rightarrow\left(i;j;k\right)=\left(0;0;13\right);\left(1;0;12\right);\left(1;1;11\right);\left(2;0;11\right);\left(2;1;10\right);\left(2;2;9\right);\left(3;0;10\right);\left(3;1;9\right)\)
\(\left(3;2;8\right);\left(3;3;7\right)\) (quá nhiều)
Hệ số....
Tìm hệ số của \(x^2\) trong khai triển thành đa thức của biểu thức \(P=\left(x^2+x-1\right)^6\)
Theo công thức nhị thức Niu-tơn, ta có :
\(P=C_6^0\left(x-1\right)^6+C_6^1\left(x-1\right)^5+....+C_6^kx^{2k}\left(x-1\right)^{6-k}+....+C_6^5x^{10}\left(x-1\right)+C_6^6x^{12}\)
Suy ra, khi khai triển P thành đa thức, \(x^2\) chỉ xuất hiện khi khai triển \(C_6^0\left(x-1\right)^6\) và \(C_6^1\left(x-1\right)^5\)
Hệ số của \(x^2\) trong khai triển \(C_6^0\left(x-1\right)^6\) là : \(C_6^0.C_6^2\)
Hệ số của \(x^2\) trong khai triển \(C_6^1\left(x-1\right)^5\) là : \(-C_6^1.C_5^0\)
Vì vậy hệ số của \(x^2\) trong khai triển P thành đa thức là : \(C_6^0.C_6^2-C_6^1.C_5^0=9\)
Tìm hệ số của x 6 trong khai triển thành đa thức của 2 - 3 x 10 .
A. C 10 6 2 6 - 3 4
B. C 10 6 2 4 - 3 6
C. - C 10 4 2 6 - 3 4
D. - C 10 6 2 4 3 6
Tìm hệ số của x 6 trong khai triển thành đa thức của 2 - 3 x 10 .
A. C 10 6 . 2 6 . - 3 4
B. C 10 6 . 2 4 . - 3 6
C. - C 10 4 . 2 6 . - 3 4
D. - C 10 6 . 2 4 . 3 6
Tìm hệ số của số hạng chứa \(x^5\) trong khai triển đa thức \(f\left(x\right)=x\left(1-2x\right)^5\)
Ta có: \(x.\left(C^k_n.a^{n-k}.b^k\right)=x.\left(C^k_5.a^{5-k}.b^k\right)=C^k_5.1^{5-k}.2^k.x^k.x\)
\(=C^k_5.2^k.x^{k+1}\)
Mà ta cần tìm số hạng của x5
\(\Rightarrow k+1=5\Leftrightarrow k=4\)
Vậy số hạng của x5 là: \(C^4_5.2^4=80\)
Ta nhân thêm ''x'' vào số hạng tổng quát vì có ''x'' là nhân tử chung của mỗi số hạng trong khải triển