Chứng minh x4+y4<x6/y2+y6/x4 với x và y khac 0
Chứng minh rằng : x4 +y4+z4 > hoặc = ( x2+y2+z2) : 3
Ta có:
\(x^4\ge0\); \(y^4\ge0\) ;\(z^4\ge0\)
\(\Rightarrow x^4+y^4+z^4\ge0\)
Ta cũng có:
\(x^2\ge0\); \(y^2\ge0\) ;\(z^2\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge0\)
Mà: \(x^4>x^2;y^4>x^2;z^4>z^2\)
\(\Rightarrow x^4+y^4+z^4\ge\left(x^2+y^2+z^2\right):3\) (đpcm)
Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5
\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có VT:
\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x.x^4+x.x^3y+x.x^2y^2+x.xy^3+x.y^4-y.x^4-y.x^3y-y.x^2y^2-y.xy^3-y.y^4\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=x^5-y^5\)
VT=VP
Vậy:...
Chứng minh: ( x 3 + x 2 y + x y 2 + y 3 )(x - y) = x 4 – y 4
Ta có: VT = ( x 3 + x 2 y + x y 2 + y 3 )(x - y)
= ( x- y). ( x 3 + x 2 y + x y 2 + y 3 ).
= x. ( x 3 + x 2 y + x y 2 + y 3 ) - y( x 3 + x 2 y + x y 2 + y 3 )
= x 4 + x 3 y + x 2 y 2 + x y 3 – x 3 y – x 2 y 2 – x y 3 – y 4
= x 4 – y 4 = VP (đpcm)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
cho x+y+z=0. chứng minh 2(x4+y4+z4)=(x2+y2+z2)2
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào
\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)
Ta có
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)
Bình phương 2 vế của (1)
\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)
Do x+y+z=0 nên
\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)
\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)
Thay (3) vào (2)
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)
chứng minh bát đẳng thức cho 2 số x, y thỏa mãn điều kiện x+y=2. chứng minh rằng: x4+y4>=2
+ x+y=2 ta có bảng
x | 0 | 1 | 2 |
y | 2 | 1 | 0 |
+khi x=0, y=2 ta có BPT 04 + 24 >= 2
+ khi x= 1, y=1 ta có BPT 14 + 14 >=2
+ khi x = 2, y=0 ta có BPT 24 + 04 >=2
Nên x4 + y4 >=2
Chứng minh rằng với mọi x, y ta luôn có:
( x 4 - x 3 y + x 2 y 2 - xy 3 + y 4 ) ( x + y ) = x 5 + y 5 .
Thực hiện phép nhân đa thức với đa thức ở vế trái
=> VT = VP (đpcm)
Cho bốn số thực a, b, x, y thỏa mãn a + b = x + y và ab = xy. Chứng minh rằng a4 + b4 = x4 + y4.
1. Cho x+y+z=0. Chứng minh rằng: (x2+y2+z2)2=2(x4+y4+z4)
2. Cho x2-y2=1. Tính giá trị biểu thức: A=2(x6-y6)-3(x4+y4)
3. Phân tích thành nhân tử: (x-3)(x-1)(x+1)(x+3)+15
4. Với n thuộc N, n>1
Chứng minh: a) 20n-1
b) 1000n+1
là các hợp số
Bài 3:
\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x^2-9\right)\left(x^2-1\right)+15\)
\(=x^4-10x^2+9+15\)
\(=x^4-10x^2+24\)
\(=\left(x^2-4\right)\left(x^2-6\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)
Cho x + y + z = 0. Chứng minh rằng ( x2 + y2 + z2)2 = 2( x4 + y4 + z4)
HELP ME !!!
Có x+y+z=0
<=>(x+y+z)+(x+y+z)=0
<=>x+y+z+x+y+z=0
<=>2x+2y+2z=0
<=>(2x+2y+2z).2=0(1)
Tương tự có :(4x+4y+4z).2=0(2)
Từ (1)và(2) có (x2+y2+z2).2=2.(x4+y4+z4)
Chúc bạn học tốt nha
chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
a, A = y (x2 - y2) (x2 + y2) - y (x4 - y4)
b, B = (x - 1)3 - (x - 1) (x2 + x + 1) - 3 (1 - x) x
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0