Những câu hỏi liên quan
NN
Xem chi tiết
HT
Xem chi tiết
AL
13 tháng 8 2016 lúc 21:01

1.4m+7n=0

=>4m=-7n

=>mx2-4m=0

=>m(x2-4)=0

=>m=0 hoặc x=2 hoặc x=-2

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 12 2017 lúc 2:03

Đáp án A

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 1 2021 lúc 21:49

a) Ta có: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2y+2y=2m-1\\mx-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+2\right)=2m-1\\mx=1+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=\dfrac{1+2y}{m}=\left(1+\dfrac{2m-1}{m^2+2}\right)\cdot\dfrac{1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2+2+2m-1}{m^2+2}\cdot\dfrac{1}{m}=\dfrac{m^2+2m+1}{m\left(m^2+2\right)}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x>0 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{m^2+2m+1}{m\left(m^2+2\right)}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m>\dfrac{1}{2}>0\)

Vậy: Khi m>0 thì hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x>0 và y>0

Bình luận (1)
LM
Xem chi tiết
NT
14 tháng 12 2023 lúc 10:55

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 6 2017 lúc 6:58

 

Đáp án A.

Cách 1:

 

Do các mặt của tứ diện có diện tích bằng nhau nên

Kiểm tra các trường hợp chỉ có bốn điểm thỏa mãn.

Bình luận (0)
DD
Xem chi tiết
PB
Xem chi tiết
CT
31 tháng 3 2019 lúc 11:27

Bình luận (0)
NV
Xem chi tiết
NT
9 tháng 1 2019 lúc 21:49

Đặt \(\dfrac{x}{m} + \dfrac{y}{n} + \dfrac{z}{p} = k\)

<=> \(\dfrac{x}{m} =k <=> x = mk \)

<=> \(\dfrac{y}{n} = k <=> y =nk\)

<=> \(\dfrac{z}{p} = k <=> z = pk\)

Thay \(x = mk ; y=nk ; z=pk\) vào A , ta có :

\(\dfrac{(mk)^2+(nk)^2+(pk)^2}{(m^2k+n^2+p^2k)^2}\)

= \(\dfrac{m^2k^2+n^2k^2+p^2k^2}{(m^4k^2+n^4k^2+p^4k^2+2m^2n^2k^2+2n^2p^2k^2+2m^2p^2k^2)}\)

= \(\dfrac{k^2(m^2+n^2+p^2}{k^2(m^4+n^4+p^4+2m^2n^2+2n^2p+2m^2p^2)}\)

= \(\dfrac{k^2(m^2+n^2+p^2}{k^2(m^2+n^2+p^2)^2}\)

= \(\dfrac{1}{m^2+n^2+p^2} \)

Vậy A = \(\dfrac{1}{m^2+n^2+p^2}\)

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 10 2019 lúc 15:02

Đáp án C.

Ta có  x + y + z = 3 ⇔ x 3 + y 3 + z 3 = 1   . Suy ra tập hợp các điểm   M x ; y ; z là 8 mặt chắn có phương trình: ;

x 3 + y 3 + z 3 = 1 ; x − 1 + y − 3 + z − 3 = 1 ; x − 3 + y − 3 + z 3 = 1

x − 3 + y 3 + z − 3 = 1 ; x 3 + y − 3 + z − 3 = 1 ; x − 3 + y 3 + z 3 = 1 ; x 3 + y − 3 + z 3 = 1 ; x 3 + y 3 + z − 3 = 1

Các mặt chắn này cắt các trục Ox, Oy, Oz tại các điểm , A − 3 ; 0 ; 0 , B 3 ; 0 ; 0 , C 0 ; − 3 ; 0 D 0 ; 3 ; 0 , E 0 ; 0 ; − 3 , F 0 ; 0 ; 3 .

Từ đó, tập hợp các điểm  M x ; y ; z    thỏa mãn   x + y + z = 3 là các mặt bên của bát diện đều  x + y + z = 3    (hình vẽ) cạnh bằng 3 2 .

Thể tích khối bát diện đều là   V = 3 2 3 . 2 3 = 36 (đvtt).

Bình luận (0)