PB

Trong không gian với hệ tọa độ Oxyz, biết rằng tập hợp các điểm M x ; y ; z  sao cho x + y + z = 3  là một hình đa diện. Tính thể tích V của khối đa diện đó

A. V = 54

B. V = 72

C. V = 36

D. V = 27

CT
24 tháng 10 2019 lúc 15:02

Đáp án C.

Ta có  x + y + z = 3 ⇔ x 3 + y 3 + z 3 = 1   . Suy ra tập hợp các điểm   M x ; y ; z là 8 mặt chắn có phương trình: ;

x 3 + y 3 + z 3 = 1 ; x − 1 + y − 3 + z − 3 = 1 ; x − 3 + y − 3 + z 3 = 1

x − 3 + y 3 + z − 3 = 1 ; x 3 + y − 3 + z − 3 = 1 ; x − 3 + y 3 + z 3 = 1 ; x 3 + y − 3 + z 3 = 1 ; x 3 + y 3 + z − 3 = 1

Các mặt chắn này cắt các trục Ox, Oy, Oz tại các điểm , A − 3 ; 0 ; 0 , B 3 ; 0 ; 0 , C 0 ; − 3 ; 0 D 0 ; 3 ; 0 , E 0 ; 0 ; − 3 , F 0 ; 0 ; 3 .

Từ đó, tập hợp các điểm  M x ; y ; z    thỏa mãn   x + y + z = 3 là các mặt bên của bát diện đều  x + y + z = 3    (hình vẽ) cạnh bằng 3 2 .

Thể tích khối bát diện đều là   V = 3 2 3 . 2 3 = 36 (đvtt).

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết