Những câu hỏi liên quan
DH
Xem chi tiết
H24
Xem chi tiết
H24
6 tháng 2 2021 lúc 10:47

Giải phương trình $x^2-4x+6=\sqrt{2x^2-5x+3}+\sqrt{-3x^2+9x-5}$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

 
Bình luận (1)
H24
Xem chi tiết
NN
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Bình luận (0)
NN
3 tháng 9 2023 lúc 9:43

nhầm

 

Bình luận (0)
DH
Xem chi tiết
H24
28 tháng 11 2021 lúc 16:27

a, ĐKXĐ:...

\(\sqrt{5x+10}=8-x\\ \Leftrightarrow5x+10=64-16x+x^2\\ \Leftrightarrow x^2-21x+54=0\)

.....

b, ĐKXĐ:...

\(\sqrt{4x^2+x-12}=3x-5\\ \Leftrightarrow4x^2+x-12=9x^2-30x+25\\ \Leftrightarrow5x^2-31x+37=0\)

.....

 

Bình luận (1)
LH
Xem chi tiết
HA
Xem chi tiết
HA
2 tháng 12 2018 lúc 10:56

Đặt a=\(\sqrt{2x^2+5x+12}\)

b=\(\sqrt{2x^2+3x+2}\)

=>a2=2x2+5x+12 và b2=2x2+2x+2

Ta có a+b=x+5. (1)

.a2-b2=2(x+5)

<=>a2-b2=2(a+b)

<=> a-b=2. (2)

Cộng (1) và (2) vế theo vế

ta được 2a=x+7

<=>2\(\sqrt{2x^2+5x+12}\)=x+7

<=>4(2x2+5x+12)=x2+14x+49

<=>7x2+6x-1=0

<=>(x+1)(7x-1)=0

<=>\(\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\) vậy pt có 2 nghiệm-1;-\(\dfrac{1}{7}\)

Bình luận (1)
MT
Xem chi tiết
SD
Xem chi tiết
H24
28 tháng 6 2019 lúc 15:22

\(pt\Leftrightarrow2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x+1\right)\left(x+1\right)^2}=\left(x+1\right)\left(5x^2-8x+8\right)\)\(\Leftrightarrow2\left(x+1\right)\sqrt{x}+\left(x+1\right)\sqrt{3\left(2x+1\right)}-\left(x+1\right)\left(5x^2-8x+8\right)=0\)\(\Leftrightarrow\left(x+1\right)\left(2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2+8x-8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2-8+8x=0\circledast\end{matrix}\right.\)

Giải (*)\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2-8+8x=0\)

\(\Leftrightarrow2\sqrt{x}-2+\sqrt{3\left(2x+1\right)}-3=5x^2-8x+3\)

\(\Leftrightarrow\frac{4x-4}{2\sqrt{x}+2}+\frac{6x-6}{\sqrt{3\left(2x+1\right)}+3}=\left(x-1\right)\left(5x-3\right)\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{3\left(2x+1\right)}+3}-5x+3\right)=0\)

x=1

bạn giải nốt cái còn lại nhá

Bình luận (0)
DV
Xem chi tiết
NT
10 tháng 2 2020 lúc 16:37

1) Ta có: 3x-12=5x(x-4)

\(\Leftrightarrow3x-12-5x\left(x-4\right)=0\)

\(\Leftrightarrow3x-12-5x^2+20x=0\)

\(\Leftrightarrow-5x^2+23x-12=0\)

\(\Leftrightarrow-5x^2+20x+3x-12=0\)

\(\Leftrightarrow\left(-5x^2+20x\right)+\left(3x-12\right)=0\)

\(\Leftrightarrow5x\left(-x+4\right)+3\left(x-4\right)=0\)

\(\Leftrightarrow5x\left(4-x\right)-3\left(4-x\right)=0\)

\(\Leftrightarrow\left(4-x\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{3}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{4;\frac{3}{5}\right\}\)

2) Ta có: 3x-15=2x(x-5)

\(\Leftrightarrow3x-15-2x\left(x-5\right)=0\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{5;\frac{3}{2}\right\}\)

3) Ta có: 3x(2x-3)+2(2x-3)=0

\(\Leftrightarrow\left(2x-3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}\)

4) Ta có: (4x-6)(3-3x)=0

\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{4}=\frac{3}{2}\\x=1\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};1\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
10 tháng 2 2020 lúc 16:15

4) (4x - 6 ) ( 3 - 3x ) = 0

<=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
10 tháng 2 2020 lúc 16:17

Bài 1 :

a, Ta có : \(3x-12=5x\left(x-4\right)\)

=> \(3x-12=5x^2-20x\)

=> \(3x-12-5x^2+20x=0\)

=> \(5x^2-23x+12=0\)

=> \(5x^2-20x-3x+12=0\)

=> \(5x\left(x-4\right)-3\left(x-4\right)=0\)

=> \(\left(5x-3\right)\left(x-4\right)=0\)

=> \(\left[{}\begin{matrix}5x-3=0\\x-4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{5}\\x=4\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{3}{5}\) và x = 4 .

b, Ta có : \(3x-15=2x\left(x-5\right)\)

=> \(3x-15-2x\left(x-5\right)=0\)

=> \(3\left(x-5\right)-2x\left(x-5\right)=0\)

=> \(\left(3-2x\right)\left(x-5\right)=0\)

=> \(\left[{}\begin{matrix}3-2x=0\\x-5=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=5\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{3}{2}\) và x = 5 .

c, Ta có : \(3x\left(2x-3\right)+2\left(2x-3\right)=0\)

=> \(\left(3x+2\right)\left(2x-3\right)=0\)

=> \(\left[{}\begin{matrix}3x+2=0\\2x-3=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=-2\\2x=3\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(-\frac{2}{3}\) và x = \(\frac{3}{2}\) .

d, Ta có : \(\left(4x-6\right)\left(3-3x\right)=0\)

=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}4x=6\\-3x=-3\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{6}{4}\\x=1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 1 và x = \(\frac{6}{4}\) .

Bình luận (0)
 Khách vãng lai đã xóa