1.Cho (O) đường kính AB. Vẽ tiếp tuyến tại A, M ∈ Ax MB cắt (O) tại C.
a)CMR △ABC vuông
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Cho (O) đường kính AB. Vẽ tiếp tuyến tại A, M ∈ Ax MB cắt (O) tại C.
a)CMR △ABC vuông và MA2 = MB.MC
b)Qua A kẻ đường vuông góc OM tại I cắt (O), tại D. CMR M,C,I,A cùng thuộc 1 đường tròn
c)CMR MD là tiếp tuyến của (O) và \(\widehat{MCD}=\widehat{MDB}\)
cho đường tròn (o) và dây ab.vẽ tiếp tuyến ax. từ o vẽ tia oh vuông góc với ab tại h và cắt x tại m.
a)c/m mb là tiếp tuyến của đtròn (o).
b) vẽ đường kính bd, md cắt đtròn ở e.c/m mb^2=md.me.
c) qua h vẽ đường song song ma cắt mb tại f. c/m fe là tiếp tuyến của đtròn (o)
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Bài 1: Cho đường tròn (O) và điểm M ở ngoài đường tròn. Từ M kẻ tiếp tuyến MA,MB với đường tròn (A,B là tiếp điểm ), tia OM cắt đường tròn tại C, tiếp tuyến tại C cắt tiếp tuyến MA,MB tại P và Q. Chứng minh rằng diện tích tam giác MPQ lớn hơn một nửa diện tích tam giác ABC.
Bài 2: Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ nửa đường tròn (O) đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc một nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By theo thứ tự tại C và D. Gọi N là giao điểm của AD và BC. CMR: MN vuông góc với AB
1.Cho (O) đường kính AB kẻ tiếp tuyến Ax, M ∈ Ax. Kẻ tiếp tuyến MC. MB cắt đường tròn tại K. CMR \(\widehat{KAC}=\widehat{OMB}\)
Cho (o) dg kính AB. vẽ tia tiếp tuyến ax của (o). Trên cùng 1 mặt phẳng bờ ab có chứa tia Ax lấy M thuộc (o) sao cho MA>MB. Tiếp tuyên của (o) tại m cắt tia Ax tại D. Gọi H là giao điểm DO với AM.
a) CMR: A,D,M,O cùng 1 thuộc đg tròn
b) OA vuông góc với BC, OH. OD=R^2
Mọi ng giúp mình với
a: góc DAO+góc DMO=90+90=180 độ
=>DAOM nội tiếp đường tròn (O)
b: Xét (O) có
DA,DM là tiếp tuyến
=>DA=DM
mà OA=OM
nên OD là trung trực của AM
=>OD vuông góc AM tại H
ΔOMD vuông tại M có MH là đường cao
nên OH*OD=OM^2
=>OH*OD=R^2
Con nhớ đường cho nửa đường tròn tâm o đường kính AB =2R . Từ điểm M trên tiếp tuyến Ax của nửa đường tròn , vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Vẽ CH vuông góc với AB tại H . Đường thẳng MB cắt đường tròn tâm O tại Q và cắt CH tại N , đường thẳng MO cắt AC tại I . Cm:M,Q,I,A cùng thuộc một đường tròn b, N là trung điểm của CH
Cho nửa đường tròn đấy ạ . Mn giúp mk với , mk cảm ơn trước ạ 😊😊
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) \(MA^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) MA\(^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.