Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.Cho (O) đường kính AB. Vẽ tiếp tuyến tại A, M ∈ Ax MB cắt (O) tại C.
a)CMR △ABC vuông
1.Cho (O) đường kính AB kẻ tiếp tuyến Ax, M ∈ Ax. Kẻ tiếp tuyến MC. MB cắt đường tròn tại K. CMR \(\widehat{KAC}=\widehat{OMB}\)
cho đường tròn tâm O bán kính R , AB là dây khác đường kính . qua O kẻ đường vuông góc với AB tại H , cắt tiếp tuyến tại A cảu đường tròn tại M. vẽ tiếp tuyến tại C cắt MB tại D . chứng minh AC.CD =R^2
Chớ đường tròn tâm O đường kính AB gọi d là tiếp tuyến tại B với đường tròn tâm O. Trên d lấy điểm M kẻ tiếp tuyến MC vuông góc với đường tròn tâm O. Kẻ CH vuông góc với AB tại H. MA cắt đường tròn tâm O tại K và cắt CH tại I, OM cắt CB tại N.
a. Cm AMO= KBC.
b. Cm ICKN nội tiếp đường tròn
c. Cho biết CH=4 AH =2 tính IN
Cho (O, R) đường kính AB, tiếp tuyến Ax, trên Ax lấy điểm M bất kì, kẻ dây AC vuông góc với OM a) Chứng minh MC là tiếp tuyến của (O) b) Gọi H là hình chiếu vuông góc của C lên AB. Tiếp tuyến tại B cắt tia AC tại D. Gọi I là trung điểm của CH, tia AI cắt BD tại N. Chứng minh: N là trung điểm của BD c) Chứng minh: CN là tiếp tuyến của (O)
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Các đường cao AD, BE cắt nhau tại H. Tiếp tuyến tại A của (O) cắt đường thằng BC tại M.
a) C/M tứ giác DHEC nội tiếp
b)CM 4 điểm A,B,D,E cùng thuộc 1 đg tròn
c)CM MA2=MB.MC
d) AD cắt (O) tại điểm thứ hai là I.Vẽ đường kính AK của (O).CM BK=CI
e) Kẻ IF vuông góc với AB (F thuộc AB). FD cắt AC tại .CM IN//BE
Giải hộ em câu d và e thôi ạ mấy câu kia giải hay không cũng được.
Cho đường tròn (O), hai đường kính AB và CD vuông góc nhau, M là một điểm trên cung nhỏ AC. Tiếp tuyến của đường tròn (O) tại M cắt DC tại S. Gọi I là giao điểm của CD và MB. a) Chứng minh tứ giác AIOM nội tiếp. b) Chứng minh MIC = MDB và MSD = 2MBA c) MD cắt AB tại K. Chứng minh DK.DM không phụ thuộc vị trí của điểm M trên cung AC.
cho M nằm ngoài (O) từ M kẻ 2 tiếp tuyến MA,MB với đường tròn, vẽ cát tuyến MCD không đi qua tâm
a)chứng minh các điểm M,A,O,B cùng thuộc một đường tròn và MO vuông góc với AB tại H
b) chứng minh MA.AD=MD.AC
c) gọi I là trung điểm của CD và E là giao điểm của AB và OI. chứng minh rằng: tứ giác OECH nội tiếp
Bài 13 Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thắng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng: a) Tứ giác MAOB là tứ giác nội tiếp và MC.MD = OM^2 - R^2 b) Bốn điểm O, H, C, D thuộc một đường tròn.