Những câu hỏi liên quan
NC
Xem chi tiết
LN
5 tháng 11 2016 lúc 13:16

1. D

2. D

3. B

Bình luận (0)
DD
2 tháng 9 2018 lúc 11:29

1.d

2.d

3.b

Bình luận (0)
DD
2 tháng 9 2018 lúc 11:29

1.d

2.d

3.b

Bình luận (0)
LN
Xem chi tiết
ND
31 tháng 12 2015 lúc 17:49

1/  196

2/  5/4

3/  1/3

 

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 12 2017 lúc 13:03

Đáp án: B.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

max y = 4/3

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 2 2018 lúc 16:52

Tập xác định -1 ≤ x ≤ 1, do đó 1 – x ≤ 2, 1 + x ≤ 2 ⇒ ( 1 - x )   +   ( 1 + x )   ≤   2 2   < 4 nên C sai; Ngoài ra vì 0 và 2 đều nhỏ hơn 2 nên chỉ cần xét xem 2 có phải là giá trị của hàm số không, dễ thấy khi x = 0 thì y = 2. Vậy max y = 2

Đáp án: B

Bình luận (0)
NT
Xem chi tiết
H24
3 tháng 11 2023 lúc 21:02

A là đáp án đúng!

Bình luận (0)
NT
Xem chi tiết
NT
9 tháng 11 2023 lúc 10:16

loading...  loading...  

Bình luận (1)
BT
Xem chi tiết
NA
Xem chi tiết
AH
26 tháng 8 2021 lúc 22:00

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$

Bình luận (0)
AP
Xem chi tiết
HT
25 tháng 2 2022 lúc 20:48

a) Để m đạt giá trị lớn nhất là 0 thì \(y=\left(3m-4\right)x^2\le0\) ⇔ \(3m-4\le0\)

                                                                                       ⇔ \(m\le\dfrac{4}{3}\) nhưng theo điều kiện  

                                                                                             thì m ≠ \(\dfrac{4}{3}\)

➤ Để m đạt giá trị lớn nhất là 0 thì \(m< \dfrac{4}{3}\)

b) Để m đạt giá trị nhỏ nhất là 0 thì \(y=\left(3m-4\right)x^2\ge0\) ⇔ \(3m-4\ge0\)

                                                                                       ⇔ \(m\ge\dfrac{4}{3}\) nhưng theo điều kiện  

                                                                                           thì m ≠ \(\dfrac{4}{3}\)

➤ Để m đạt giá trị nhỏ nhất là 0 thì \(m>\dfrac{4}{3}\)

                                                                                        

 

Bình luận (0)
TQ
Xem chi tiết