Những câu hỏi liên quan
PB
Xem chi tiết
CT
20 tháng 9 2018 lúc 8:16

Khoảng cách từ điểm M(x; y) ∈ (C) tới đường thẳng y = -1 khi |x| → +∞ dần tiến về 0.

 

Bình luận (0)
AD
Xem chi tiết
NT
2 tháng 1 2022 lúc 8:21

Các hàm số a,b,e là các hàm số bậc nhất

Bình luận (1)
TB
Xem chi tiết
NM
23 tháng 11 2021 lúc 7:22

\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)

Hs bậc nhất là a,b,d,e

\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)

Bình luận (0)
PP
Xem chi tiết
NT
25 tháng 11 2023 lúc 10:48

a: \(y=\left(2x^2-x+1\right)^{\dfrac{1}{3}}\)

=>\(y'=\dfrac{1}{3}\left(2x^2-x+1\right)^{\dfrac{1}{3}-1}\cdot\left(2x^2-x+1\right)'\)

\(=\dfrac{1}{3}\cdot\left(4x-1\right)\left(2x^2-x+1\right)^{-\dfrac{2}{3}}\)

b: \(y=\left(3x+1\right)^{\Omega}\)

=>\(y'=\Omega\cdot\left(3x+1\right)'\cdot\left(3x+1\right)^{\Omega-1}\)

=>\(y'=3\Omega\left(3x+1\right)^{\Omega-1}\)

c: \(y=\sqrt[3]{\dfrac{1}{x-1}}\)

=>\(y'=\dfrac{\left(\dfrac{1}{x-1}\right)'}{3\cdot\sqrt[3]{\left(\dfrac{1}{x-1}\right)^2}}\)

\(=\dfrac{\dfrac{1'\left(x-1\right)-\left(x-1\right)'\cdot1}{\left(x-1\right)^2}}{\dfrac{3}{\sqrt[3]{\left(x-1\right)^2}}}\)

\(=\dfrac{-x}{\left(x-1\right)^2}\cdot\dfrac{\sqrt[3]{\left(x-1\right)^2}}{3}\)

\(=\dfrac{-x}{\sqrt[3]{\left(x-1\right)^4}\cdot3}\)

d: \(y=log_3\left(\dfrac{x+1}{x-1}\right)\)

\(\Leftrightarrow y'=\dfrac{\left(\dfrac{x+1}{x-1}\right)'}{\dfrac{x+1}{x-1}\cdot ln3}\)

\(\Leftrightarrow y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}:\dfrac{ln3\left(x+1\right)}{x-1}\)

\(\Leftrightarrow y'=\dfrac{x-1-x-1}{\left(x-1\right)^2}\cdot\dfrac{x-1}{ln3\cdot\left(x+1\right)}\)

\(\Leftrightarrow y'=\dfrac{-2}{\left(x-1\right)\cdot\left(x+1\right)\cdot ln3}\)

e: \(y=3^{x^2}\)

=>\(y'=\left(x^2\right)'\cdot ln3\cdot3^{x^2}=2x\cdot ln3\cdot3^{x^2}\)

f: \(y=\left(\dfrac{1}{2}\right)^{x^2-1}\)

=>\(y'=\left(x^2-1\right)'\cdot ln\left(\dfrac{1}{2}\right)\cdot\left(\dfrac{1}{2}\right)^{x^2-1}=2x\cdot ln\left(\dfrac{1}{2}\right)\cdot\left(\dfrac{1}{2}\right)^{x^2-1}\)

h: \(y=\left(x+1\right)\cdot e^{cosx}\)

=>\(y'=\left(x+1\right)'\cdot e^{cosx}+\left(x+1\right)\cdot\left(e^{cosx}\right)'\)

=>\(y'=e^{cosx}+\left(x+1\right)\cdot\left(cosx\right)'\cdot e^u\)

\(=e^{cosx}+\left(x+1\right)\cdot\left(-sinx\right)\cdot e^u\)

Bình luận (0)
NT
25 tháng 11 2023 lúc 11:07

a) \(y=\left(2x^2-x+1\right)^{\dfrac{1}{3}}\)

\(\Rightarrow y'=\dfrac{1}{3}.\left(2x^2-x+1\right)^{\dfrac{1}{3}-1}.\left(4x-1\right)\)

\(\Rightarrow y'=\dfrac{1}{3}.\left(2x^2-x+1\right)^{-\dfrac{2}{3}}.\left(4x-1\right)\)

b) \(y=\left(3x+1\right)^{\pi}\)

\(\Rightarrow y'=\pi.\left(3x+1\right)^{\pi-1}.3=3\pi.\left(3x+1\right)^{\pi-1}\)

c) \(y=\sqrt[3]{\dfrac{1}{x-1}}\)

\(\Rightarrow y'=\dfrac{\left(x-1\right)^{-1-1}}{3\sqrt[3]{\left(\dfrac{1}{x-1}\right)^{3-1}}}=\dfrac{\left(x-1\right)^{-2}}{3\sqrt[3]{\left(\dfrac{1}{x-1}\right)^2}}=\dfrac{1}{3.\sqrt[]{x-1}.\sqrt[3]{\left(\dfrac{1}{x-1}\right)^2}}\)

\(\Rightarrow y'=\dfrac{1}{3\left(x-1\right)^{\dfrac{1}{2}}.\left(x-1\right)^{\dfrac{2}{3}}}=\dfrac{1}{3\left(x-1\right)^{\dfrac{7}{6}}}=\dfrac{1}{3\sqrt[6]{\left(x-1\right)^7}}\)

d) \(y=\log_3\left(\dfrac{x+1}{x-1}\right)\)

\(\Rightarrow y'=\dfrac{\dfrac{1-\left(-1\right)}{\left(x-1\right)^2}}{\dfrac{x+1}{x-1}.\ln3}=\dfrac{2}{\left(x+1\right)\left(x-1\right).\ln3}\)

e) \(y=3^{x^2}\)

\(\Rightarrow y'=3^{x^2}.ln3.2x=2x.3^{x^2}.ln3\)

f) \(y=\left(\dfrac{1}{2}\right)^{x^2-1}\)

\(\Rightarrow y'=\left(\dfrac{1}{2}\right)^{x^2-1}.ln\dfrac{1}{2}.2x=2x.\left(\dfrac{1}{2}\right)^{x^2-1}.ln\dfrac{1}{2}\)

Các bài còn lại bạn tự làm nhé!

Bình luận (1)
ER
Xem chi tiết
NT
25 tháng 11 2019 lúc 16:16

Ảnh đẹp thì

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
PP
Xem chi tiết
HM
5 tháng 8 2023 lúc 11:19

\(y'_1=-\dfrac{2}{\left(x-1\right)^2}\) nghịch biến trên R/{1}

\(y'_2=-3x^2+2x-3\) có nghiệm khi y' = 0

\(y'_3=4x^3+4x\) có nghiệm khi y' = 0

Vậy không có hàm số đơn điệu trên R.

Bình luận (1)
1D
Xem chi tiết
NT
25 tháng 10 2021 lúc 23:08

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)

Bình luận (0)
TL
Xem chi tiết
NT
20 tháng 7 2021 lúc 16:32

Bài 1 : làm tương tự với bài 2;3 nhé

Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)

\(\Rightarrow f\left(1\right)=a+b=1\)

\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)

\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)

Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 5 2018 lúc 16:59

Đáp án là B

Bình luận (0)