Những câu hỏi liên quan
VH
Xem chi tiết
NT
30 tháng 1 2021 lúc 21:44

a) Xét (O) có 

ΔDBC nội tiếp đường tròn(D,B,C∈(O))

BC là đường kính(gt)

Do đó: ΔDBC vuông tại D(Định lí)

⇒CD⊥BD tại D

⇒CD⊥AB tại D

⇒HD⊥AD tại D

Xét ΔADH có HD⊥AD tại D(cmt)

nên ΔADH vuông tại D(Định nghĩa tam giác vuông)

Ta có: ΔADH vuông tại D(cmt)

mà DI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)

nên \(DI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Xét (O) có

ΔBEC nội tiếp đường tròn(B,E,C∈(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

⇒BE⊥CE tại E

⇒BE⊥AC tại E

⇒HE⊥AE tại E

Xét ΔAEH có AE⊥EH tại E(cmt)

nên ΔAEH vuông tại E(Định nghĩa tam giác vuông)

Ta có: ΔAEH vuông tại E(cmt)

mà EI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)

nên \(EI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Từ (1) và (2) suy ra ID=IE

hay I nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OD=OE(=R)

nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra OI là đường trung trực của DE

hay OI⊥DE(đpcm)

Bình luận (0)
CX
30 tháng 1 2021 lúc 20:45

I là điểm nào ạ?

Bình luận (2)
TH
Xem chi tiết
NT

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó;ΔBEC vuông tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CD là các đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)

nên HECF là tứ giác nội tiếp

=>\(\widehat{HEF}=\widehat{HCF}\)

Bình luận (1)
H24
Xem chi tiết
LL
30 tháng 5 2021 lúc 22:43

xét ΔMDC và ΔMBD có

∠M chung

∠MBD=∠MDC=\(\dfrac{1}{2}sđ\stackrel\frown{DC}\)

⇒ΔΔMDC ∼ ΔMBD (g.g)

\(\dfrac{MD}{MB}=\dfrac{MC}{MD}\)⇒MD2=MC.MB

Bình luận (0)
NH
Xem chi tiết
NT
28 tháng 1 2021 lúc 22:27

a) Xét (O) có

\(\widehat{DBE}\) là góc nội tiếp chắn \(\stackrel\frown{DE}\)

Do đó: \(\widehat{DBE}=\dfrac{1}{2}\cdot sđ\stackrel\frown{DE}\)(Định lí góc nội tiếp)

\(\Leftrightarrow\widehat{DBE}=\dfrac{1}{2}\cdot60^0=30^0\)

Xét (O) có

ΔBEC nội tiếp đường tròn(B,E,C∈(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

⇒BE⊥CE tại E

hay BE⊥AC tại E

Ta có: ΔAEB vuông tại E(BE⊥AC tại E)

nên \(\widehat{EAB}+\widehat{ABE}=90^0\)(hai góc nhọn phụ nhau)

\(\widehat{BAC}=90^0-\widehat{ABE}=90^0-30^0\)

\(\widehat{BAC}=60^0\)

Vậy: \(\widehat{BAC}=60^0\)

 

Bình luận (0)
VH
Xem chi tiết
NT
29 tháng 11 2023 lúc 19:22

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>CD\(\perp\)DB tại D

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)EC tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CD là đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

Bình luận (0)
DN
Xem chi tiết
NT
15 tháng 5 2023 lúc 0:23

a: góc BDC=góc BEC=90 độ

=>CD vuông góc AB, BE vuông góc AC

góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

 

Bình luận (0)
YH
Xem chi tiết
NT
13 tháng 5 2022 lúc 20:48

a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BCDE là tứ giác nội tiếp

b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có 

\(\widehat{HCD}=\widehat{ABD}\)

Do đó: ΔDHC\(\sim\)ΔDAB

Suy ra: DH/DA=DC/DB

hay \(DH\cdot DB=DA\cdot DC\)

Bình luận (0)
VT
Xem chi tiết
NH
Xem chi tiết
NT
3 tháng 12 2021 lúc 14:45

a: Xét (O) có 

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét ΔABC có

BD là đường cao

CE là đường cao

BD cắt CE tại H

Do đó: AH⊥BC

Bình luận (0)