Những câu hỏi liên quan
JE
Xem chi tiết
NL
27 tháng 1 2021 lúc 18:26

\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)

\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)

\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)

\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)

\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 3 2019 lúc 4:47

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 7 2019 lúc 2:10

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 5 2017 lúc 14:31

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 11 2019 lúc 12:34

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 9 2019 lúc 18:17

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 3 2018 lúc 2:04

Bình luận (0)
LH
Xem chi tiết
NT
4 tháng 11 2023 lúc 21:26

\(\left\{{}\begin{matrix}u1+u2+u3=13\\u4-u1=26\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+u_1\cdot q+u_1\cdot q^2=13\\u_1\cdot q^3-u_1=26\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1\left(1+q+q^2\right)=13\\u_1\left(q^3-1\right)=26\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1+q+q^2}{\left(q-1\right)\left(q^2+q+1\right)}=\dfrac{13}{26}=\dfrac{1}{2}\\u_1\left(q^3-1\right)=26\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{q-1}=\dfrac{1}{2}\\u_1\left(q^3-1\right)=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}q-1=2\\u_1=\dfrac{26}{q^3-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}q=2+1=3\\u_1=\dfrac{26}{3^3-1}=1\end{matrix}\right.\)

Tổng 8 số hạng đầu của cấp số nhân là:

\(\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{1\cdot\left(1-3^8\right)}{1-3}=3280\)

Bình luận (0)
AD
4 tháng 11 2023 lúc 21:29

\(\left\{{}\begin{matrix}u_1+u_2+u_3=13\\u_4-u_1=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+u_1.q+u_1.q^2=13\\u_1.q^3-u_1=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2\right)=13\\u_1\left(q^3-1\right)=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2\right)=13\\u_1\left(q-1\right)\left(q^2+q+1\right)=26\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13.\left(q-1\right)=26\\u_1.\left(q^3-1\right)=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}q=3\\u_1=1\end{matrix}\right.\)

\(S_8=\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{1.\left(1-3^8\right)}{1-3}=3280\)

Bình luận (0)