Những câu hỏi liên quan
TA
Xem chi tiết
LD
16 tháng 3 2021 lúc 22:17

\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)

\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)

\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)

Áp dụng bất đẳng thức AM-GM ta có :

\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)

Vậy GTNN của Q là 1 <=> x = y = 2

Bình luận (0)
 Khách vãng lai đã xóa
KN
17 tháng 3 2021 lúc 12:36

Or

\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*

Do đó \(Q\ge1\)

Đẳng thức xảy ra khi x = y = 2

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết
H24
28 tháng 5 2021 lúc 23:05

Đặt  Q = \(\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}\)     = \(\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)

  

        Q = \(\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}\)       = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)

        Q = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}\)       =   \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)

  

   Áp dụng bất đẳng thức  AM-GM ta có:

  \(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)

  \(x^2+y^2\ge2\sqrt{x^2y^2=}2xy\)

\(\Leftrightarrow\)Q =  \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}\)

\(\Leftrightarrow\)Q =  \(\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}\)\(1\)

Đẳng thức xảy ra : \(\Leftrightarrow\hept{\begin{cases}x,y>0\\x=y\Rightarrow\\xy=4\end{cases}x=y=2}\)

Vậy giá trị nhỏ nhất của Q là 1 \(\Leftrightarrow x=y=2\)

Bình luận (0)
 Khách vãng lai đã xóa
HD
6 tháng 6 2021 lúc 16:44

CMR: \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}⋮4\)

đặt \(a=2+\sqrt{3}\)\(b=2-\sqrt{3}\)

 suy ra: \(a+b=2+\sqrt{3}+2-\sqrt{3}=4\)

và : \(ab=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)

Ta có: \(a^{2021}+b^{2021}=\left(a+b\right)\left(a^{2020}-a^{2019}b+a^{2018}b^2-...+a^{1010}b^{1010}-...-ab^{2019}+b^{2020}\right)\)

\(=\left(a+b\right)\left(a^{2020}-a^{2018}ab+a^{2016}a^2b^2-...+a^{1010}b^{1010}-...-abb^{2018}+b^{2020}\right)\)

Vì \(a+b=4\);\(ab=1\)nên:

\(a^{2021}+b^{2021}=4\left(a^{2020}-a^{2018}+a^{2016}-...+1-...-b^{2018}+b^{2020}\right)\)

\(=4\left(a^{2020}+b^{2020}-\left(a^{2018}+b^{2018}\right)+a^{2016}+b^{2016}-...+1\right)\)

\(=4\left(\left(a+b\right)^{2020}-2\left(ab\right)^{1010}-\left(a+b\right)^{2018}+2\left(ab\right)^{1009}+\left(a+b\right)^{2016}-2\left(ab\right)^{1008}-...+1\right)\)\(=4\left(4^{2020}-2-4^{2018}+2+4^{2016}-2-...+1\right)\)

\(=4S\)(Với \(S\inℕ^∗\))

suy ra \(a^{2021}+b^{2021}=4S⋮4\)

Vậy \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}⋮4\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
HN
Xem chi tiết
NL
Xem chi tiết
GL

\(4P=4x^2+4xy+4y^2-12\left(x+y\right)+12\)

\(=\left(2x+y-3\right)^2+3\left(y-1\right)^2\ge0\)

\(\Rightarrow P\ge0\)

Đẳng thức xảy ra khi x=y=1

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
LF
31 tháng 8 2018 lúc 22:58

tag ko co thong bao de mai t nghien cuu

Bình luận (0)
HN
1 tháng 9 2018 lúc 6:52

Bài này cái khó là sử lý điều kiện thôi nên t làm phần đó thôi nhé.

Từ điều kiện suy ra được.

log\(\sqrt{3}\)(3x + 3y) + (3x + 3y) = log\(\sqrt{3}\)(x2 + y2 + xy + 2) + (x2 + y2 + xy + 2)

Dễ thấy hàm số f(t) = log\(\sqrt{3}\)(t) + t đồng biến trên (0; +\(\infty\)) nên

=> 3x + 3y = x2 + y2 + xy + 2

Bình luận (4)
LF
1 tháng 9 2018 lúc 23:31

\(P'\left(x;y\right)=\dfrac{\left(x+2y+3\right)'\cdot\left(x+y+6\right)-\left(x+2y+3\right)\cdot\left(x+y+6\right)'}{\left(x+y+6\right)^2}\)

\(=\dfrac{\left(1+2y'\right)\cdot\left(x+y+6\right)-\left(x+2y+3\right)\cdot\left(1+y'\right)}{\left(x+y+6\right)^2}\)

\(=\dfrac{\left(x+9\right)y'-y+3}{\left(x+y+6\right)^2}=0\)

\(\left(x+9\right)y'-y+3=0\)\(\Leftrightarrow y'=-\dfrac{3}{x+9}+\dfrac{y}{x+9}\) la` pt vi phan tuyen tinh cap 1

\(\Leftrightarrow y=c_1x+9c_1+3\) khi do ta co:

\(P=\dfrac{x+2\left(c_1x+9c_1+3\right)+3}{x+c_1x+9c_1+3+6}=\dfrac{2c_1+1}{c_1+1}\)

Voi \(x=0\) khi do \(c_1=\dfrac{y\left(0\right)-3}{9}\)

Khi do tu dieu kien \(log_{\sqrt{3}}\left(\dfrac{x+y}{x^2+y^2+xy+2}\right)=x\left(x-3\right)+y\left(y-3\right)+xy\) cho \(2\) nghiem la \(y=1;y=2\)

*)Voi \(y=1\rightarrow c_1=-\dfrac{2}{9}\rightarrow P=\dfrac{5}{7}\)

*)Voi \(y=2\rightarrow c_1=-\dfrac{1}{9}\rightarrow P=\dfrac{7}{8}\)

De thay: \(\dfrac{5}{7}>\dfrac{7}{8}\rightarrow P_{min}=\dfrac{5}{7}\)

§4. Hàm số mũ. Hàm số logarit

Is that true ?

Bình luận (3)
NH
Xem chi tiết
TN
Xem chi tiết
CW
23 tháng 4 2016 lúc 22:28

P= (x+y) (x+2) (y+2)

  = 2(x+2) (y+2)

  = 2* (x+y) *2

  = 4* (-3)

   = -12

Bình luận (0)
H24
23 tháng 4 2016 lúc 22:29

P=(x+y).(x+2).(y+2)

 =2.xy+x2+2y+4

 =2.(-3)+2(x+y)+4

 =-6+2.2+4

 =2

Vậy P=2

Mk nghĩ têk nhg ko bt đúg hay sai nữa ^~^ :3 :p

Bình luận (0)
NL
Xem chi tiết
AH
24 tháng 12 2021 lúc 8:28

Lời giải:

Áp dụng BĐT AM-GM:

$S=1+\frac{2xy}{x^2+y^2}+2+\frac{x^2+y^2}{xy}$

$=3+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+\frac{x^2+y^2}{2xy}$

$\geq 3+2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{2xy}}+\frac{2xy}{2xy}$

$=3+2+1=6$

Vậy $S_{\min}=6$ khi $x=y$

Bình luận (0)