tag ko co thong bao de mai t nghien cuu
Bài này cái khó là sử lý điều kiện thôi nên t làm phần đó thôi nhé.
Từ điều kiện suy ra được.
log\(\sqrt{3}\)(3x + 3y) + (3x + 3y) = log\(\sqrt{3}\)(x2 + y2 + xy + 2) + (x2 + y2 + xy + 2)
Dễ thấy hàm số f(t) = log\(\sqrt{3}\)(t) + t đồng biến trên (0; +\(\infty\)) nên
=> 3x + 3y = x2 + y2 + xy + 2
\(P'\left(x;y\right)=\dfrac{\left(x+2y+3\right)'\cdot\left(x+y+6\right)-\left(x+2y+3\right)\cdot\left(x+y+6\right)'}{\left(x+y+6\right)^2}\)
\(=\dfrac{\left(1+2y'\right)\cdot\left(x+y+6\right)-\left(x+2y+3\right)\cdot\left(1+y'\right)}{\left(x+y+6\right)^2}\)
\(=\dfrac{\left(x+9\right)y'-y+3}{\left(x+y+6\right)^2}=0\)
\(\left(x+9\right)y'-y+3=0\)\(\Leftrightarrow y'=-\dfrac{3}{x+9}+\dfrac{y}{x+9}\) la` pt vi phan tuyen tinh cap 1
\(\Leftrightarrow y=c_1x+9c_1+3\) khi do ta co:
\(P=\dfrac{x+2\left(c_1x+9c_1+3\right)+3}{x+c_1x+9c_1+3+6}=\dfrac{2c_1+1}{c_1+1}\)
Voi \(x=0\) khi do \(c_1=\dfrac{y\left(0\right)-3}{9}\)
Khi do tu dieu kien \(log_{\sqrt{3}}\left(\dfrac{x+y}{x^2+y^2+xy+2}\right)=x\left(x-3\right)+y\left(y-3\right)+xy\) cho \(2\) nghiem la \(y=1;y=2\)
*)Voi \(y=1\rightarrow c_1=-\dfrac{2}{9}\rightarrow P=\dfrac{5}{7}\)
*)Voi \(y=2\rightarrow c_1=-\dfrac{1}{9}\rightarrow P=\dfrac{7}{8}\)
De thay: \(\dfrac{5}{7}>\dfrac{7}{8}\rightarrow P_{min}=\dfrac{5}{7}\)
Is that true ?
cho mk hỏi cái để là \(log^{\sqrt{3}}_{10}\) nhân cho cái kia hay \(\sqrt{3}\) là cơ số vậy bn .
Akai Haruma ; Lightning Farron coi hộ bài này với :((
còn ông bác Hung nguyen (không tag đc , nếu có thấy thì lm giùm nha)
Bài này thì làm được nhưng quan trọng cóc có máy tính
Đáp án là: \(\dfrac{69-\sqrt{249}}{94}\)