Những câu hỏi liên quan
NL
Xem chi tiết
LL
20 tháng 12 2019 lúc 20:38
https://i.imgur.com/0504RrG.jpg
Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
NT
27 tháng 10 2023 lúc 23:19

Theo đề, ta có: \(S_n=3003\)

=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)

=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)

=>n(n+1)=6006

=>n^2+n-6006=0

=>(n-77)(n+78)=0

=>n=77(nhận) hoặc n=-78(loại)

Vậy: n=77

Bình luận (0)
NV
Xem chi tiết
NA
25 tháng 4 2019 lúc 13:58

em moi hoc lo 8

Bình luận (0)
NL
25 tháng 4 2019 lúc 15:50

\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)

Tổng 16 số hạng đầu tiên:

\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)

Bình luận (0)
HH
Xem chi tiết
TL
2 tháng 1 2021 lúc 12:21

Câu 1: Gọi 3 số là a;b;c

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=6\\2b=a+c\\a^2+b^2+c^2=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\a+c=4\\a^2+c^2=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}b=2\\c=4-a\\a^2+\left(4-a\right)^2=26\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\c=5\\a=-1\end{matrix}\right.\left(\text{V\text{ì} }a< c\right)\)

Bình luận (0)
TL
2 tháng 1 2021 lúc 12:35

Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)

\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)

Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt

\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)

(2) có 2 nghiệm \(t_1< t_2\)

=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)

\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)

 

Bình luận (0)
TL
2 tháng 1 2021 lúc 12:35

Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)

\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)

Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt

\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)

(2) có 2 nghiệm \(t_1< t_2\)

=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)

\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)

 

Bình luận (0)
TC
Xem chi tiết
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:40

Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).

Chọn đáp án A.

Bình luận (0)
BB
Xem chi tiết
NT
27 tháng 11 2023 lúc 20:32

Công sai của cấp số cộng đó là:

\(u_3-u_1=u_1+2d-u_1=2d=2\cdot3=6\)

Bình luận (0)
TC
Xem chi tiết
AH
24 tháng 12 2018 lúc 16:16

Lời giải:

a) Theo tính chất về cấp số cộng là \(u_k=\frac{u_{k-1}+u_{k+1}}{2}\) thì có:

\(\left\{\begin{matrix} y=\frac{4+4x}{2}=2x+2\\ 2y=\frac{10+14}{2}=12\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=6\\ x=2\end{matrix}\right.\)

Vậy ta thu được dãy $(u_n)$: \(2,4,6,8,10,12,14,.....\) với \(u_n=2n\)

\(S_n=u_1+u_2+...+u_n=2.1+2.2+2.3+...+2n\)

\(=2(1+2+3+...+n)=2.\frac{n(n+1)}{2}=n(n+1)\)

Để \(S_n=420\Rightarrow n(n+1)=420\)

\(\Rightarrow n=20\)

Do đó \(U_n=U_{20}=2.20=40\)

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 12 2018 lúc 3:35

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 11 2019 lúc 18:04

Bình luận (0)